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Abstract of the Dissertation

Fourier Coefficients of Triangle Functions

by

John Garrett Leo

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2008

Professor William Duke, Chair

Triangle functions Jm are generalizations of the j modular function that map the

interior of a hyperbolic triangle with vertices (i,− exp(−πi/m), i∞) to the upper

half plane, wherem ≥ 3 is an integer. The corresponding groups, generalizing the

modular group, are known as Hecke groups and are generated by S(z) = −1/z

and Tm(z) = 2 cos(π/m).

Fourier coefficients of the Jm were first studied by Lehner in 1954, but were

shown to be transcendental (except in the cases m = 3, 4, 6,∞) by Wolfart in

1981 and research on them mostly stopped. However the transcendental part is

easily factored out, and the remaining part, a rational integer, has very interest-

ing properties, especially with respect to which primes divide the denominator.

In this thesis experimental evidence, a conjecture, and a proof of part of the

conjecture are presented.
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CHAPTER 1

Introduction

This thesis concerns the number-theoretic properties of fourier coefficients of

triangle functions. Triangle functions are conformal mappings from hyperbolic

triangles to the upper half plane, generalizing the modular function j. Modular

functions, along with related functions known as modular forms and automorphic

forms, are principal objects of study in number theory, and most famously played

a major role in Wiles’ proof of Fermat’s Last Theorem.

A modular form (of weight k) is a holomorphic function on the upper half plane

that satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all ( a b
c d ) ∈ SL2(Z). Since ( 1 1

0 1 ) ∈ SL2(Z) we have f(z+1) = f(z) and so f is

periodic and has a fourier expansion. We require the function to be “holomorphic

at infinity”, which means the expansion has no negative powers. In other words,

letting q = e2πiz, we can write

f(z) =
∞∑
n=0

anq
n.

If a0 = 0 then f is called a cusp form. For a given weight k the modular forms

and cusp forms each form finite-dimensional vector spaces, and linear operators

known as Hecke operators act on these spaces. The functions thus have a great

deal of structure and one is able to study their properties using linear algebra

and other tools.
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The canonical example of a modular form is the Eisenstein series, which for even

weight k ≥ 4 can be defined as

Ek(z) =
1

2ζ(k)

∑′

c,d∈Z

(cz + d)−k

where
∑′ means to exclude the case in which both c = 0 and d = 0 and ζ(k) =∑∞

n=1 n
−k is the Riemann zeta function. The Eisenstein series has a fourier

expansion

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n

where Bk are the Bernoulli numbers (rational integers) defined by setting

x

ex − 1
=

∞∑
k=0

Bk
xk

k!

and σk(n) =
∑

d|n,d>0 d
k. That this sum of divisors function should appear in the

fourier coefficients already gives the Eisenstein series number theoretic impor-

tance, but far more can be done. One remarkable application of Eisenstein series

(defined more generally on “congruence subgroups” of SL2(Z)) is to compute the

number of ways a positive integer can be written as the sum of k squares, for k

even (see for example [DS05], section 1.2).

The canonical cusp form is the discriminant modular form

∆(z) = g2(z)
3 − 27g3(z)

2,

where g2(z) =
(2π)4

12
E4(z) and g3(z) =

(2π)6

216
E6(z). It has weight 12 and the fourier

expansion

∆(z) = (2π)12
∞∑
k=1

τ(k)qk

where τ(n) is the Ramanujan tau function, another important function in number

theory. It can be shown using Hecke operators that τ(k) is multiplicative; that
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is, that τ(mn) = τ(m)τ(n) if m and n are relatively prime. The discriminant

modular form also has a remarkable product formula

∆(z) = (2π)12q
∞∏
k=1

(1− qn)24.

A modular function is similar to a modular form save that it can be meromorphic

on the upper half plane and at infinity (the fourier series can have finitely many

negative powers); on the other hand it must satisfy the stronger condition

f

(
az + b

cz + d

)
= f(z)

for all ( a b
c d ) ∈ SL2(Z). The canonical modular function is the j function which

can be defined as

j(z) =
1728g2(z)

3

∆(z)
= 1728

E4(z)
3

E4(z)3 − E6(z)2
.

The fourier series for this function has all integral coefficients and begins

j(z) = q−1+
∞∑
k=0

anq
n = q−1+744+196884q+21493760q2+8642909970q3+ · · · .

Lehner ([Leh49a, Leh49b]) proved several congruence relations on these coeffi-

cients, for example that a2k ≡ 0 (mod 211) and a3k ≡ 0 (mod 35) for all k (for

an exposition see [Apo90], chapter 4).

More remarkably, around 1979 John McKay noticed a simple relationship between

these coefficients and the dimensions of the smallest irreducible representations of

the Monster simple group. This connection was dubbed “Monstrous Moonshine”

by Conway and Norton ([CN79]), and was proven by Borcherds in 1992 ([Bor92]).

For an overview see [Gan04].

One can generalize the notions of modular forms and functions by replacing

SL2(Z) by some other group. One important class is that of congruence sub-

3



groups, that is subgroups of SL2(Z) in which the matrix coefficients satisfy cer-

tain congruence conditions. Another class, far less studied, is the class of Hecke

groups Gm, subgroups of SL2(R) generated by the two matrices

S =

0 −1

1 0

 , Tm =

1 λm

0 1


where m ≥ 3 (or m = ∞) and λm = 2 cos(π/m). The group G3 is simply the

modular group SL2(Z). These groups were studied by Hecke ([Hec36, Hec38])

and also are special cases of larger classes of groups known as triangle groups and

more generally Fuchsian groups that have been studied since the 19th century,

and are still important not only in number theory, but also for example the

Geometrization Program of Thurston in topology ([MR03]).

The quotient of the upper half plane by the action of the group is a hyperbolic

triangle, and we are interested in modular functions invariant under this action.

These functions can be viewed as conformal mappings from the interior of a

hyperbolic triangle (with vertices at i, −e−πi/m, and i∞) to the upper half plane.

It can be shown that any such function is a rational function of a specific function

Jm(z), whose inverse (mapping the upper half plane to the triangle) is called a

Schwarz triangle function. The modular function j for m = 3 satisfies j(z) =

1728J3(z).

The standard way to determine the coefficients of j and their properties is to first

compute the coefficients of the Eisenstein series, using either a derivation from

the product formula for sine or a more natural derivation using double cosets

(see [Leh64], p. 282 and [Iwa97], Chapter 3), and then derive the coefficients of j

from that. However for the Hecke groups it is also possible derive the fourier series

for Jm as the inverse of the fourier series for the corresponding Schwarz triangle

function, which can be computed explicitly as a ratio of solutions to a specific

4



hypergeometric differential equation (see for example [Neh52], Chapters V and

VI, or [Car60], Chapter Two). One can then in turn derive the coefficients of the

corresponding Eisenstein series and discriminant modular form from that of Jm.

Lehner ([Leh54]) was the first to take this approach, and his work was slightly

generalized and clarified by Raleigh ([Ral63]). Let

Jm(z) =
∞∑

n=−1

anq
n

where q = e2πiz/λm and λm = 2 cos π
m
. Raleigh proved that log a−1 = −2ψ(1) +

ψ(1− α) + ψ(1− β)− π sec(π/m) (where ψ(z) = Γ′(z)/Γ(z)) and that a−1 ∈ Q

for m = 3, 4, 6 and ∞; Wolfart ([Wol81]) proved that a−1 is transcendental for

all other values of m. Raleigh further proved that for n ≥ 0

an =
Pn(m

2)

Qnan−1m
2n+2

,

where Pn is an integer polynomial of degree n+ 1 and Qn is an integer. In other

words, save for a power of a−1, the coefficients are all rational numbers. Lehner

had proven this earlier using a different method.

Akiyama ([Aki92]) proved Raleigh’s conjecture that for n ≥ 2, the numerator

of an is divisible by m2 − 4, and also that the primes dividing Qn are all less

than or equal to n + 1. He also examined divisibility of coefficients by powers

of 2 and 3 ([Aki93]). No further work seems to have been done on number-

theoretic properties of the fourier coefficients in the cases other than m = 3, 4, 6

and ∞. Perhaps the reason is that the coefficients are transcendental in these

cases, even though the transcendental part can easily be factored out. Also

Takeuchi ([Tak77]) proved that the Hecke groups are arithmetic precisely in the

cases m = 3, 4, 6 and ∞. For the non-arithmetic cases it appears Hecke operators

and other machinery used to prove congruence and other results can no longer

be used.
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In this thesis, based upon empirical evidence, we present the following conjecture.

Conjecture. Let m = 5 or m ≥ 7. Let Jm(z) =
∑∞

n=−1 anq
n, and let

an =
Cn

Dnan−12
6n+6m3n+3

where Cn, Dn ∈ Z and gcd(Cn, Dn) = 1. Then the primes dividing {Dn : n ≥ 1}

are {p : p - 2m and p ̸≡ ±1 (mod m)}. Furthermore if n0 is the least n for which

p divides the denominator of Dn, then n0 = pk − 1 for some k ≥ 1.

Using methods devised by Dwork ([Dwo69, Dwo73]) to prove integrality results for

power series solutions to certain generalized hypergeometric differential equations,

we prove the following special case of the conjecture.

Theorem. Let m ≥ 3. In the notation of the conjecture above, p does not divide

Dn for all odd primes p ≡ 1 (mod 4m).

It appears we should be able to strengthen this to prove that p does not divide

Dn for all odd primes p ≡ ±1 (mod m) which essentially proves one direction of

the conjecture.

This result is interesting because it shows that the coefficients are p-adic integers

for these primes, and therefore may satisfy further congruence conditions in this

context. Furthermore the primes that appear in the denominators do not split in

the ring of integers Z[λm] of Q(λm), which is in turn the maximal real subfield

of the cyclotomic field Q(eπi/m). This suggests that this ring of integers is the

proper context in which to study the properties of the coefficients.

Although no further work on the properties of the fourier coefficients seems to

have been done since Akiyama, both triangle functions and Hecke groups have

continued to be active areas of research. We discuss this research and its connec-

tion with our results in the final chapter.
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The thesis is structured as follows. Chapter 2 describes the derivation of the

triangle functions and Hecke Groups. Chapter 3 contains the main results of

the thesis. After rederivation of some previous results, computer experiments

are presented along with the conjecture they led to, and the special case of the

conjecture is proven. Chapter 4 discusses modular forms, both what information

can be determined about their coefficients from the Jm, and attempts to derive

the coefficients directly. These latter attempts run into obstacles, which are thus

circumvented by deriving coefficient information from the Jm functions. Finally

Chapter 5 presents the conclusion and future work.
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CHAPTER 2

Triangle Functions

In this chapter we describe and rederive major known results, all classical, re-

garding triangle functions. We first show how they are defined as biholomorphic

functions mapping hyperbolic triangles to the upper half plane. We then define

Hecke groups and demonstrate their relation to triangle functions.

2.1 Mappings of Hyperbolic Triangles

The Riemann Mapping Theorem states that there exists a conformal (biholomor-

phic) map from any simply-connected non-empty proper subset of C to the upper

half plane H. It does not, however, describe how to derive such functions. For

certain classes of regions explicit functions can be determined. One class is the

interiors of polygons; the mapping from H to the interior of the polygon is an

example of an elliptic integral, and its inverse (from the interior of the polygon

to H) is an elliptic function.

Another class is the interiors of polygons with curvilinear edges, and in particular

hyperbolic triangles, which we concern ourselves with here. In this case the

mapping from H to the interior of the triangle is a ratio of linearly independent

solutions to the hyperbolic differential equation, and the inverse is an automorphic

function generalizing the Klein j-invariant (which corresponds to the case in
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which the three angles are 0, π
2
, π
3
).

For references for this material see Stein and Shakarchi ([SS03], Chapter 8),

Nehari ([Neh52], Chapters V and VI), Caratheodory ([Car60], Chapter Two)

and Fricke ([Fri30], pp. 105–115). The exposition here is derived primarily from

Nehari and Caratheodory.

Let f(z) be a biholomorphic map from H to the interior of a hyperbolic triangle

whose sides are circular arcs, whose vertices are A,B,C, and whose angles at

those vertices are πα, πβ, πγ, where α, β, γ are all non-negative and α+β+γ < 1.

We wish to derive a formula for f . To this end we use the Schwarzian derivative,

defined to be

{w, z} =

(
w′′

w′

)′

− 1

2

(
w′′

w′

)2

(2.1)

where w is a function of z. The Schwarzian derivative has the property that it is

invariant under fractional linear transformations. That is, if

W (z) =
aw(z) + b

cw(z) + d

where ad − bc ̸= 0, then {W, z} = {w, z}. The proof is a straightforward calcu-

lation. First take the derivative of both sides to get

W ′ =
ad− bc

(cw + d)2
w′

and then take the logarithmic derivative to get

W ′′

W ′ =
w′′

w′ −
2cw′

cw + d
.

Taking another derivative gives(
W ′′

W ′

)′

=

(
w′′

w′

)′

+
2c2w′2

(cw + d)2
− 2cw′′

cw + d

and alternatively squaring gives(
W ′′

W ′

)2

=

(
w′′

w′

)2

+
4c2w′2

(cw + d)2
− 4cw′′

cw + d
.

9



Subtracting half the second equation from the first gives {W, z} = {w, z}.

Now without loss of generality (compose with a fractional linear transformation

if necessary), assume f maps 0 to A, 1 to B and ∞ to C. Assume α > 0. Let gA

be the fractional linear transformation that maps A to the origin O, B to point

X on the positive real axis, and C to point Z so that the circular arc from A to

C is mapped to a straight line and so that the angle ZOX is πα. Let fA = gA ◦f .

Then {fA, z} = {f, z}. If we consider the function hA(z) = f
1/α
A (z), then hA is

holomorphic is the upper half-plane and maps a segment of the real axis centered

on the origin to a segment of the real axis (with 0 mapping to 0) and so by

Schwarz reflection is holomorphic at 0. Also hA is conformal at 0 and therefore

h′A(0) ̸= 0. Letting hA(z) = zf1(z)
1/α it follows we can write fA(z) = zαf1(z)

where f1(z) is holomorphic at z = 0, f1(0) ̸= 0, and f1(z) is real when z is real.

If α = 0, then instead let gA be the fractional linear transformation mapping A to

−∞, B to a point X on the real axis, and Z to a point along the line through iπ

parallel to the real axis. Again let fA = gA ◦ f , and now consider hA(z) = efA(z).

Then as before hA is conformal at 0 and letting hA(z) = zef1(z) we can write

fA(z) = log z + f1(z) where f1(z) is holomorphic at z = 0, f1(0) ̸= 0, and f1(z)

is real when z is real.

In either case we compute

{f, z} = {fA, z} =
1− α2

2z2
+
cA
z

+ FA(z) (2.2)

where cA is a real constant and FA(z) is holomorphic.

Similarly for β > 0 let gB be the fractional linear transformation that maps B

to the point P = 1, C to point X on the positive real axis, and D to point

Z so that the circular arc from B to A is mapped to a straight line and so

that the angle ZPX is πβ. Let fB = gB ◦ f . Then {fB, z} = {f, z}. Letting

10



hB(z) = f
1/β
B (z) = (z−1)f2(z)

1/β, as before we have fB(z) = (z−1)βf2(z) where

f2(z) is holomorphic at z = 0, f2(0) ̸= 0, and f2(z) is real when z is real. In the

case β = 0 we get fB(z) = log(z − 1) + f2(z) using the analogous procedure to

the case α = 0.

We compute

{f, z} = {fB, z} =
1− β2

2(1− z)2
+

cB
1− z

+ FB(z)

where cB is a real constant and FB(z) is holomorphic.

To handle the case at ∞ use the substitution z = 1/t and note that by (2.2) we

have

{f, t} =
1− γ2

2t2
+
c3
t
+ F3(t).

A straightforward calculation shows that {f, z} = t4 {f, t}, from which it follows

{f, z} =
1− γ2

2z2
+
cC
z3

+
1

z4
FC(1/z). (2.3)

It follows

{f, z} − 1− α2

2z2
− cA

z
− 1− β2

2(1− z)2
− cB

1− z

is entire and converges to zero as z → ∞ (therefore is also bounded), and so by

Liouville’s theorem must be identically zero. Thus

{f, z} =
1− α2

2z2
+
cA
z

+
1− β2

2(1− z)2
+

cB
1− z

. (2.4)

Furthermore from (2.3) it follows

lim
z→∞

z {f, z} = 0, lim
z→∞

z2 {f, z} =
1− γ2

2
,

and combining these with (2.4) yields the relations cA = cB and

1− γ2

2
=

1− α2

2
+

1− β2

2
− cA,

11



from which we ultimately obtain

{f, z} =
1− α2

2z2
++

1− β2

2(1− z)2
+

1− α2 − β2 + γ2

2z(1− z)
. (2.5)

We now wish to solve this differential equation. By the definition of Schwarzian

derivative, it is a third-order equation, but it suffices to solve a second-order

equation.

Lemma 1. Let

u′′(z) + p(z)u(z) = 0

be a linear second-order homogeneous differential equation, and let u1(z) and

u2(z) be two linearly independent solutions. Then

w(z) =
u1(z)

u2(z)

is a solution of the equation

{w, z} = 2p(z).

Proof. We have u′′1 + pu1 = 0, u′′2 + pu2 = 0, and since u1 = u2w we also have

u2w
′′ + 2u′2w

′ = 0. Therefore
w′′

w′ = −2
u′2
u2

and (
w′′

w′

)′

− 1

2

(
w′′

w′

)2

= −2

(
u′2
u2

)′

− 2

(
u′2
u2

)2

= −2
u′′2
u2

from which the result follows.

By the lemma it suffices to find two linearly independent solutions u1(z), u2(z)

to the differential equation

u′′(z) +
1

4

[
1− α2

z2
+

1− β2

(1− z)2
+

1− α2 − β2 + γ2

z(1− z)

]
u(z) = 0. (2.6)
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However since we only need the ratio of the two solutions, we can further simplify,

and show that the ratio y1(z)/y2(z) of two solutions of a hypergeometric equation

will be equal to u1(z)/u2(z). To do this we examine the equation

y′′ + P (z)y +Q(z)y = 0 (2.7)

where y(z) = σ(z)u(z), P and Q are to be determined, and

σ(z) = e−
1
2

∫
P (z) dz.

Note that if y1(z) and y2(z) are two linearly independent solutions of (2.7), then

by definition y1/y2 = u1/u2.

Substituting y(z) = σ(z)u(z) into (2.7), we get

u′′ +

(
Q− 1

4
P 2 − 1

2
P ′
)
u = 0

and by comparison with (2.6) we want

Q− 1

4
P 2 − 1

2
P ′ =

1

4

[
1− α2

z2
+

1− β2

(1− z)2
+

1− α2 − β2 + γ2

z(1− z)

]
.

This equation holds if we let

P (z) =
c− (a+ b+ 1)z

z(1− z)
, Q(z) = − ab

z(1− z)

where

a =
1

2
(1− α− β + γ), b =

1

2
(1− α− β − γ), c = 1− α.

With these values equation (2.7) becomes

z(1− z)y′′ + [c− (a+ b+ 1)z]y′ − aby = 0 (2.8)

which is the well-known hypergeometric differential equation. Details of its prop-

erties and solutions can be found in for example Whittaker and Watson ([WW96],

Chapter XIV).
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One solution to (2.8) is the hypergeometric series

F (a, b, c; z) =
∞∑
k=0

(a)k(b)k
k!(c)k

zk, (2.9)

as can be verified by direct computation. Here (a)k is the rising factorial with k

terms:

(a)k = a(a+ 1) · · · (a+ k − 1).

There are several ways to calculate a linearly independent second solution to the

hypergeometric differential equations, depending upon the constants chosen. In

the case we are interested in, one of the angles, say πα, will be zero. In this case

we have

a =
1

2
(1− β + γ), b =

1

2
(1− β − γ), c = 1. (2.10)

and one solution to (2.8) is F (a, b, 1; z). Now define

F1(a, b; z) =
∞∑
k=1

(a)k(b)k
(k!)2

k−1∑
j=0

(
1

a+ j
+

1

b+ j
− 2

1 + j

)
zk. (2.11)

Then a second, linearly independent, solution to (2.8) is

F (a, b, 1; z) log z + F1(a, b; z), (2.12)

as can again be verified by direct computation (see [Car60], §388).

It follows that the function f mapping the upper half plane to the interior of the

hyperbolic triangle is

f(z) = A

(
log z +

F1(a, b; z)

F (a, b, 1; z)

)
+B (2.13)

where A and B are constants to be determined.
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2.2 Hecke Groups

We now wish specialize the results of the previous section to specific triangles

we are interested in. Let m ≥ 3 be either an integer or ∞. Let our hyperbolic

triangles have vertices at ρ, i, and ∞, where ρ = − exp(−πi/m); the angles at

these vertices are π/m, π/2 and 0 respectively. Let our function Φm(w) map the

upper half plane to this triangle so that 0 maps to ρ, 1 maps to i, and ∞ maps to

∞. The results above assume that the angle is 0 at the vertex to which 0 maps,

so we must first use the map w → 1/w and then map 0 to ∞, 1 to i and ∞ to ρ.

Following (2.10), let

α =
1

2

(
1

2
− 1

m

)
, β =

1

2

(
1

2
+

1

m

)
. (2.14)

Using results described in the previous section, as well as calculations of constants

in [Car60], §394, Raleigh ([Ral63], p. 108) determines this function explicitly to

be

Φm(w) = − logw +
F1(α, β; 1/w)

F (α, β, 1; 1/w)
+ logAm (2.15)

where

logAm = −2ψ(1) + ψ(1− α) + ψ(1− β)− π sec(π/m) (2.16)

is a constant. Here ψ(z) = Γ′(z)/Γ(z).

We are interested in the inverse of Φm(w), which we will call Jm(z), where

2πiz/λm = Φm(w). This function satisfies

Jm(ρ) = 0, Jm(i) = 1, Jm(i∞) = ∞,

where ρ = − exp(−πi/m), and Jm maps the interior of the hyperbolic triangle

with vertices (ρ, i, i∞) onto H. The angles at the three vertices are π
m
, π
2
and 0

respectively. The boundary of the hyperbolic triangle is mapped to R ∪∞.
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Given an integer m ≥ 3, let Gm be the group of fractional linear transformations,

acting discontinuously on the upper half plane H, generated by

S(z) = −1/z, Tm(z) = z + λm, where λm = 2 cos(π/m).

In terms of matrices, these elements are

S =

0 −1

1 0

 , Tm =

1 λm

0 1


and Gm is a subgroup of PSL2(R). The groups Gm were first studied by Hecke

([Hec36],[Hec38]) and are referred to as Hecke groups. The case G3 is just the

modular group Γ(1) = PSL2(Z).

The interior of a fundamental region of Gm is the set

D = {z ∈ H : −λ/2 < Im z < λ/2, |z| > 1}, where λ = λm (see for example

[Kat92], p. 101). Since Jm is real valued on the boundary of its hyperbolic trian-

gle, using Schwarz reflection across the imaginary axis we can extend its domain

to D; it now maps D and its boundary (except i∞) holomorphically to the entire

complex plane. Note that a single reflection has determinant −1 and is not a

member of PSL2(R), but any pair of adjacent reflections will have determinant

+1 and be a member of Gm. Furthermore by the definition of Schwarz reflection

the value of Jm after two adjacent reflections is unchanged. The images of the

fundamental region tile the entire upper half plane, and it follows that Jm(z) is

automorphic for Gm if we can show that it is meromorphic at infinity.

Since Jm(z + λm) = Jm(z), the function has a Fourier expansion at z = i∞

Jm(z) =
∞∑

n=−∞

anq
n

where q = e2πiz/λm and λm = 2 cos π
m
. The function is meromorphic at infinity if

all but finitely many an = 0 for n < 0.
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In fact it turns out that the function is of the form

Jm(z) =
∞∑

n=−1

anq
n (2.17)

as we will show in the next chapter by inverting Φm.

Raleigh proves that a−1 = Am, where Am is defined in (2.16); we will reprove

this in the next chapter. He shows that a−1 ∈ Q for m = 3, 4, 6 and ∞; Wolfart

([Wol81]) proves that a−1 is transcendental for all other values of m.

Raleigh further proves (see also [Aki92]) that for n ≥ 0 each an of the Fourier

expansion (2.17) is of the form

an =
Pn(m

2)

Qnan−1m
2n+2

, (2.18)

where Pn is an integer polynomial of degree n + 1 and Qn is an integer. Lehner

([Leh54]), prior to Raleigh’s work, proves a similar result using a different nor-

malization of the triangle function.

Akiyama ([Aki92]) proves that the primes dividing Qn are all less than or equal

to n + 1. His proof follows Raleigh’s use of the Schwarzian derivative. In the

next chapter we present a proof of the same result following Lehner’s algorithmic

method. We then look at which primes divide the denominators in more detail.
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CHAPTER 3

Fourier Coefficients of Triangle Functions

This is the primary chapter of the thesis. In this chapter we first prove some

general properties of power series and series related to hypergeometric functions

in particular. We use these properties to reprove some known results about

fourier series of triangle functions. We then describe computer experiments which

suggest there are further properties of the denominators of the coefficients with

regard to divisibility by primes, and state a detailed conjecture. We show how

the conjecture relates to the splitting of primes in the natural ring of integers

in which the entries of the relevant Hecke group lie. Finally we use methods of

Dwork to prove a special case of the conjecture.

For reference here are the results of the previous chapter which will be most

important in this chapter. Given m ≥ 3, let Jm be the conformal map from the

interior of the hyperbolic triangle with vertices (ρ, i, i∞) onto H. The function

satisfies

Jm(ρ) = 0, Jm(i) = 1, Jm(i∞) = ∞,

where ρ = − exp(−πi/m), and the angles at the three vertices are π
m
, π
2
and 0

respectively. Jm(z) has a Fourier expansion at z = i∞

Jm(z) =
∞∑

n=−1

anq
n (3.1)

where q = e2πiz/λm and λm = 2 cos π
m
. (Note that we will actually prove that the
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sum starts at −1 in Theorem 9 below.)

The inverse of Jm(z) is Φm(w), where 2πiz/λm = Φm(w) and

Φm(w) = − logw +
F1(α, β; 1/w)

F (α, β, 1; 1/w)
+ logAm (3.2)

Here we have

α =
1

2

(
1

2
− 1

m

)
, β =

1

2

(
1

2
+

1

m

)
. (3.3)

and

F (a, b, c; z) =
∞∑
k=0

(a)k(b)k
k!(c)k

zk, (3.4)

where (a)k is the rising factorial with k terms:

(a)k = a(a+ 1) · · · (a+ k − 1).

Also

F1(a, b; z) =
∞∑
k=1

(a)k(b)k
(k!)2

k−1∑
j=0

(
1

a+ j
+

1

b+ j
− 2

1 + j

)
zk. (3.5)

The function Jm is automorphic for the Hecke group Gm, which is generated by

by the transformations

S(z) = −1/z, Tm(z) = z + λm, where λm = 2 cos(π/m).

3.1 Power Series

In this section we present basic results concerning both power series in general

and related to the hypergeometric function and Jm in particular. These will

be the fundamental tools for proving properties of the coefficients of Jm. We

conclude by reproving, using slightly different methods, the results of Lehner,

Raleigh and Akiyama mentioned at the end of the last chapter.
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Definition 2. Let vp(n) be the additive p-adic valuation of n, in other words the

unique nonnegative integer such that pvp(n)∥n.

Theorem 3 (Gauss). Let p be prime and n =
∑r

k=0 akp
k ∈ Z+, where ak ∈

Z ∩ [0, p) for all k. Let S(n) =
∑r

k=0 ak. Then

vp(n!) =
n− S(n)

p− 1
. (3.6)

Proof. Exactly
⌊
n
p

⌋
factors of n! are divisible by p,

⌊
n
p2

⌋
factors of n! are divisible

by p2 and so forth. Therefore vp(n) =
∑r

k=1

⌊
n
pk

⌋
. Now⌊

n

pk

⌋
= ak + ak+1p+ · · ·+ arp

r−k,

and so

(p− 1)

⌊
n

pk

⌋
= −ak + (ak − ak+1)p+ · · ·+ (ar−1 − ar)p

r−k + arp
r−k+1.

Summing these together for k = 1 to r gives n− S(n).

An immediate corollary of this theorem is

vp

((
n+ k

n

))
=
S(n) + S(k)− S(n+ k)

p− 1
. (3.7)

Definition 4. Let Z(n)[x0, . . . , xk] be the set of all polynomials in the variables

x0, . . . , xk with coefficients in Z whose monomial terms cxr00 · · · xrkk (c ∈ Z) all

satisfy
∑k

i=0 iri ≤ n. Similarly let Z(n)[x0, . . . , xk, y0, . . . , ym] be the set of all

polynomials in the variables x0, . . . , xk, y0, . . . , ym with coefficients in Z whose

monomial terms cxr00 · · · xrkk y
a0
0 · · · ysmm all satisfy

∑k
i=0 iri +

∑m
i=0 isi ≤ n.

Lemma 5. Let f(z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k be power series ex-

pansions about 0 with complex coefficients. Let fn(z) =
∑n

k=0 akz
k. Then the

following hold:
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1. fn(z) + gn(z) = (f + g)n(z), fn(z)− gn(z) = (f − g)n(z), and fn(z)gn(z) =

(fg)n(z). Furthermore if cn is the coefficient of zn in the expansion of

(f + g), (f − g) or (fg), then cn ∈ Z(n)[a0, . . . , an, b0, . . . , bn].

2. If f(0) = 1 (i.e., a0 = 1) then (1/f)n(z) = 1/fn(z), and if (1/f)(z) =∑∞
k=0 ckz

k then c0 = 1 and cn ∈ Z(n)[a0, . . . , an].

3. Let exp(f)(z) :=
∑∞

k=0
f(z)k

k!
and say that exp(f)(z) =

∑∞
k=0 ckz

k. If f(0) =

0 then exp(fn)(z) = exp(f)n(z), and cn ∈ (1/n!)Z(n)[a1, . . . , an].

4. Say that f(0) = 0 and that g = f−1. Then gn = (fn)
−1. If a1 = 1 then

b1 = 1, and letting Ak = ak+1 and Bk = bk+1 for all k ≥ 1, it follows

Bn ∈ Z(n)[A1, . . . , An].

Proof.

1. These follow directly from the definitions. Note that

fg(z) =
∑∞

k=0

(∑k
j=0 ajbk−j

)
zk.

2. Let h(z) = −
∑∞

k=1 akz
k. Then 1/f(z) = 1/(1−h(z)) = 1+h(z)+(h(z))2+

· · · .

3. Note that without the condition f(0) = 0 is not true in general that

exp(fn) = exp(f)n; for example let f(z) ≡ 1; then exp(fn) = e for all

n, whereas exp(f)n =
∑n

k=0 1/k!. However if f(0) = 0, so that f(z) =∑∞
k=1 akz

k, then f(z)n consists of terms all of order n or greater, so we do

have exp(fn) = exp(f)n.

4. Since f(0) = 0, we have f(z) =
∑∞

k=1 akz
k and g(z) =

∑∞
k=1 bkz

k. We can

determine the coefficients of g given those of f as follows.
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Since z = f(g(z)), plugging in we have

z =
∞∑
j=1

aj

(
∞∑
k=1

bkz
k

)j

=
∞∑
j=1

ajz
j

(
∞∑
k=1

bkz
k−1

)j

.

It follows

1 =
∞∑
j=0

aj+1z
j

(
∞∑
k=0

bk+1z
k

)j+1

.

Expanding this out so it is easier to read, we see that

1 =a1(b1 + b2z + b3z
2 + · · · ) + a2z(b1 + b2z + b3z

2 + · · · )2

+ a3z
2(b1 + b2z + b3z

2 + · · · )3 + · · · .

This shows that we can solve for the bi recursively, the first three steps

being

1 = a1b1

0 = a1b2 + a2b
2
1

0 = a1b3 + 2a2b1b2 + a3b
3
1.

Note that the first equation in which bk appears consists only of terms

involving aj for 1 ≤ j ≤ k and save for the term a1bk the other terms

involve only bj for 1 ≤ j < k. Therefore knowing fn(z) suffices to compute

gn(z). Note that for f to have an inverse in a neighborhood of 0 it must be

the case that a1 ̸= 0.

In the case a1 = 1, it is immediate that b1 = 1, and we have

0 =(B1z +B2z
2 + · · · ) + A1z(1 +B1z +B2z

2 + · · · )2

+ A2z
2(1 +B1z +B2z

2 + · · · )3 + · · · .

Again we solve for the Bi recursively, and since the power of z matches the

exponent for every Ai and Bi it is clear that Bn ∈ Z(n)[A1, . . . , An] holds.
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For positive integers m,n, define

Mm,n = 26nm2n
∏

p odd prime

p|m, p≤n

pn (3.8)

Lemma 6. Given m and α, β as in (3.3), let F (α, β, 1; z) = 1+
∑∞

n=1 cnz
n. Then

cnMm,n ∈ Z, where Mm,n is defined as in (3.8).

Proof. The techniques used in this proof can be found in Part VIII, Chapter 3,

Sections 1 and 2 of [PS98]. From (3.4) and (3.3) we have

cn =

∏n−1
k=0(m− 2 + 4mk)

(4m)nn!

∏n−1
k=0(m+ 2 + 4mk)

(4m)nn!
.

Let n! = dN where d is a product of powers of primes dividing 4m and (N, 4m) =

1. Let r ∈ Z+ be such that (4m)r ≡ 1 (mod N). Then rn
∏n−1

k=0(m− 2+4km) ≡∏n−1
k=0(r(m− 2) + k) (mod N). Now

∏n−1
k=0(r(m− 2) + k) is divisible by n! (since(

r(m−2)+n−1
n

)
∈ Z) and thus by N ; since (N, r) = 1 it follows

∏n−1
k=0(m− 2+ 4mk)

is divisible by N . The same argument shows
∏n−1

k=0(m+ 2 + 4mk) is divisible by

N .

For p prime, vp(d) <
n

p−1
by (3.6). If p is odd then at most pn divides d2; if p > n

then p - d. For p = 2 at most 22n divides d2.

Theorem 7 (Duke). Given m and α, β as in (3.3), let

F (α, β, 1; z) log z + F1(α, β; z)

F (α, β, 1; z)
= log z +

∞∑
n=1

dnz
n. (3.9)

Then dnnMm,n ∈ Z, where Mm,n is defined as in (3.8).

Proof. In general if y1, y2 are solutions of y′′ + p(z)y′ + q(z)y = 0, then the

Wronskian W = y1y
′
2 − y′1y2 satisfies W ′ = y1y

′′
2 − y′′1y2 = −p(z)W , and so
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W (z) = Ke−
∫
p(z) dz for some constant K. In the case of the hypergeometric

differential equation z(1 − z)y′′ + [γ − (α + β + 1)z]y′ − αβy = 0, we have

W (z) = Kz−γ(1− z)γ−1−α−β.

In our case the two solutions are F (α, β, 1; z) and

F (α, β, 1; z) log z + F1(α, β; z), where γ = 1 and α, β are as in (3.3). We then

have

W (z) = Kz−1(1− z)−1/2 =
K

z

∞∑
n=0

(1/2)n
n!

zn.

By evaluating zW(z) at 0 it follows K = 1. Now (1/2)n =
∏n−1

j=0 (2j+1)

2n
and∏n−1

j=0 (2j + 1) = (2n)!
n!

2n. It follows

W (z) =
1

z

∞∑
n=0

(
2n
n

)
22n

zn. (3.10)

Let F (z) = F (α, β, 1; z) and G(z) = F (α, β, 1; z) log z+F1(α, β; z). Set w = G(z)
F (z)

and assume z is a function of w. Then taking the derivative with respect to w of

both sides we get 1 = (FG′−F ′G)(z)
F (z)2

dz
dw

= W (z)F (z)−2 dz
dw
. By Lemma 6, if F (z) =

1 +
∑∞

n=1 anz
n, then anMm,n ∈ Z, and by Lemma 5 if F (z)−2 = 1 +

∑∞
n=1 bnz

n

then bnMm,n ∈ Z. By (3.10), if zW (z) =
∑∞

n=0 cnz
n then cnMm,n ∈ Z. It follows

dw
dz

= W (z)F (z)−2 = 1
z
+
∑∞

n=0 dn+1z
n where dnMm,n ∈ Z. Now integrate with

respect to z to get w = log z +
∑∞

n=1
dn
n
zn where the integration constant is 0 by

inspection. The result follows.

Corollary 8. Given α, β as in (3.3), let

z exp

(
F1(α, β; z)

F (α, β, 1; z)

)
= z +

∞∑
n=2

cn−1z
n. (3.11)

Then cnLnMm,n ∈ Z where Mm,n is defined as in (3.8) and Ln is a number all of

whose prime divisors are less than or equal to n.
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Proof. Follows immediately from Theorem 7 and Lemma 5 by exponentiating

both sides of (3.9).

We can now describe the coefficients of Jm in some detail.

Theorem 9. Jm(z) =
∑∞

n=−1 anq
n where

an(a
n
−1Ln+1Mm,n+1) ∈ Z for n ≥ 0. (3.12)

where Mm,n is defined as in (3.8) and Ln is a number all of whose prime divisors

are less than or equal to n.

In addition, if, for all n ≥ 1, the coefficients cn of (3.11) are in Zp for some

prime p, then so are ana
n
−1 (for all n ≥ −1).

Proof. In (3.2), substitute w for 1/w (this converts the power series to be around

0 rather than ∞) and let F1 = F1(α, β;w) and F = F (α, β, 1;w). Exponentiating

both sides results in

q = Amw exp(F1/F ), (3.13)

where q = e2πiz/λm . Inverting this will result in w = 1/Jm(z) = 1/
(∑∞

n=−∞ anq
n
)
.

Calculating as in Lemma 5 results in 1/w = Jm(z) =
∑∞

n=−1 anq
n with a−1 = Am.

Now let u = q/a−1. We have

u = w exp(F1/F ) = w + c1w
2 + c2w

3 + · · ·

w = u

(
1 +

∞∑
n=1

(an−1a
n−1
−1 )un

)−1

= u+ d1u
2 + d2u

3 + · · ·

The latter implies 1 +
∑∞

n=1(an−1a
n−1
−1 )un = (1 +

∑∞
n=1 dnu

n)−1. From Lemma 5

we thus see that dn ∈ Z(n)[c1, . . . , cn] and anan−1 ∈ Z(n + 1)[d1, . . . , dn+1]. From

Corollary 8 we have cn ∈ Z
LnMm,n

. Putting this together gives the first result, and

it is also clear that if the cn are in Zp then so are ana
n
−1.
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This in turn gives us a different proof of Akiyama’s theorem.

Corollary 10. Let Jm(z) =
∑∞

n=−1 anq
n where

an =
Cn

an−1Dnm2n+2

where Cn, Dn ∈ Z, (Cn, Dn) = 1. Then for n ≥ 1 all primes dividing Dn are less

than or equal to n+ 1.

Proof. Follows immediately from Theorem 9.

3.2 Computer Experiments

Computer experiments were performed to explore properties of the rational in-

teger part of the fourier coefficients of the Jm. In this section we present the

Mathematica code and some of the experimental results. Mathematica version

5.0 ([Wol03]) was used, and functions undocumented here are internal Mathe-

matica functions. More information on them can be found in the Mathematica

documentation. A Mathematica notebook containing code for the experiments is

available at [Leo08].

We follow Lehner in that we construct the inverse function Φm of Jm and then

invert it, as in Theorem 9. We first define the functions F and F1. In the following

code n is the number of terms to retain in the series. Note also that z is used

as the Mathematica variable for all power series regardless of whether the actual

variable in this thesis is w, z or q = e2πiz/λm . It will be clear from the context

which is meant.
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F[n ,m ] :=

Module
[
{α, β},

α =
1

2

(1
2
− 1

m

)
;

β =
1

2

(1
2
+

1

m

)
;

Series[Hypergeometric2F1[α, β, 1, z], {z, 0, n}]]
F1[n ,m ] :=

Module
[
{α, β},

α =
1

2

(1
2
− 1

m

)
;

β =
1

2

(1
2
+

1

m

)
;

Series
[ n∑
k=1

(
Pochhammer[α, k] Pochhammer[β, k]

(k!)2( k−1∑
j=0

( 1

α + j
+

1

β + j
− 2

j + 1

)))
zk, {z, 0, n}

]
]

The following are two functions to compute the series qJm(Amq) from its inverse

Φm. The first uses the direct method of Theorem 9. The second uses the Wron-

skian of Theorem 7. The second is a little faster (it does not use F1) although

not significantly, since most of the time is spent in exponentiation and inversion

of the series. Both factor out Am immediately so all computation is done purely

in rational integers.

ComputeInverseFunction[terms ,m ] :=

z/(InverseSeries[z exp[F1[terms,m]/F [terms,m]]])
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ComputeInverseFunction2[terms ,m ] :=

Module
[
{W},

W = Series
[
z−1 (1− z)−1/2, {z, 0, terms}

]
;

z/
(
InverseSeries

[
exp

[
Integrate

[
W/
(
F [terms,m]2

)
, z
]]])

]
The following code is used to format and print the power series so that its coef-

ficients are in factored form. The function IntegerFactorForm factors an indi-

vidual integer; for example 24 is printed as 2331. Note that FactorComplete is

typically set to False as we will not care about factoring the rather large integers

which can appear in the numerators, and which can take considerable time to

fully factor. It can be set to True if needed. The function FactorForm then

prints a rational number in factored form; for example 24/35 would be printed

as 2331

5171
. The final function FactorPoly reconstructs an entire polynomial with

rational coefficients in factored form.

IntegerFactorForm[n ] :=

Module[{f},

If[n == 1, RowBox[{”1”}],

f = Apply[ToString, FactorInteger[n, FactorComplete → False], {2}];

RowBox[Apply[SuperscriptBox, f, {1}]]]

]
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FactorForm[n ] :=

Module[{f1, f2},

If[IntegerQ[n], IntegerFactorForm[n],

f1 = IntegerFactorForm[Numerator[n]];

f2 = IntegerFactorForm[Denominator[n]];

FractionBox[f1, f2]]

]

FactorPoly[poly , x ] :=

Module[{i, outp, coeff},

Off[FactorInteger :: facnf];

outp = {FactorForm[Coefficient[poly, x, 0]]};

For[i = 1, i < Length[poly], i++,

coeff = Coefficient[poly, x, i];

If[coeff < 0,

outp = Append[outp, ”− ”]; coeff = Abs[coeff],

outp = Append[outp, ” + ”]];

outp = Append[outp, FactorForm[coeff]];

outp = Append[outp, SuperscriptBox[ToString[x], ToString[i]]]

];

On[FactorInteger :: facnf];

RowBox[outp] //DisplayForm

]

We next present some utility functions. The first replaces a polynomial with
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rational integer coefficients with a similar polynomial in which only the denom-

inators have been retained and the numerators replaced by 1. This is useful

because we will be concerned with looking only at denominators of coefficients.

DenominatorsOnly[poly , z ] :=

Module[{ot, i,mx}, ot = 0;

mx = Exponent[poly, z];

For[i = 0, i ≤ mx, i++,

ot + = 1/Denominator[Coefficient[poly, z, i]] zˆi;

];

ot]

The next utilities check to see that no denominators of a power series are divisible

by primes congruent to 0 or ±1 mod m; a counterexample would invalidate

Conjecture 11 below.

CheckPrime[p ,m ] :=

Not[Mod[p,m] == 0 || Mod[p,m] == 1 || Mod[p,m] == m− 1]

CheckPrimes[n ,m ] :=

Module[{cp}, cp[k ] := CheckPrime[k[[1]],m];

If[n == 1,True, Apply[And, Map[cp, FactorInteger[n]]]]]
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CheckDenominators[poly , z ,m ] :=

Module[{ot, i,mx}, ot = True;

mx = Exponent[poly, z];

For[i = 0, i ≤ mx, i++,

ot = ot && CheckPrimes[Denominator[Coefficient[poly, z, i]],m];

];

ot]

Finally here is an example of the computation of the first 50 nonconstant terms

of qJm(Am2
6m3q) for m = 5. Note that the number of terms and m can both be

easily changed. The output shows the factorization of denominators of the power

series.

Module
[
{terms,m,K,KN},

terms = 50; m = 5;

K = ComputeInverseFunction2[terms,m];

KN = Normal[K] /. z →
(
26 m3

)
z;

FactorPoly[DenominatorsOnly[KN, z], z]]
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1 + 1z1 + 1z2 + 1z3 + 1z4 + 1z5 + 1z6 +
1

71
z7 + 1z8 +

1

3171
z9 + 1z10 +

1

31
z11

+ 1z12 +
1

131
z13 +

1

72
z14 +

1

131
z15 +

1

72131
z16 +

1

71131171
z17 +

1

3271131
z18

+
1

71131171
z19 +

1

3271131171
z20 +

1

3173131171
z21 +

1

131171
z22

+
1

3173131171231
z23 +

1

3172131171
z24 +

1

72131171231
z25 +

1

3172132171231
z26

+
1

3472171231
z27 +

1

74132171231
z28 +

1

34132171231
z29 +

1

3374132171231
z30

+
1

73132171231
z31 +

1

3373132171231
z32 +

1

3373132171231
z33 +

1

73132172231
z34

+
1

3375132231
z35 +

1

35132172231
z36 +

1

75132172231371
z37

+
1

3574132172231
z38 +

1

3474133172231371
z39 +

1

74172231371
z40

+
1

3474133172231371
z41 +

1

3476133172231371
z42 +

1

133172231371431
z43

+
1

3476133172231371
z44 +

1

3675133172231371431
z45 +

1

75133172232371431
z46

+
1

3675133172371431471
z47 +

1

3575133172232371431
z48

+
1

78133172232371431471
z49 +

1

35133172232371431471
z50

One may notice two phenomena here. The primes that appear in the denomina-

tors are only those not dividing 2m and not congruent to±1 mod m. Furthermore

the prime p first appears at place zp
k
, where here k = 1 except for p = 3 for which

k = 2. More thorough experiments for other values of m and more terms support

these hypotheses.
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3.3 Conjecture

Based on the results of the computer experiments described in the previous sec-

tion, we conjecture the following.

Conjecture 11. Let m = 5 or m ≥ 7. Let Jm(z) =
∑∞

n=−1 anq
n, and let

an =
Cn

Dnan−12
6n+6m3n+3

where Cn, Dn ∈ Z, (Cn, Dn) = 1. Then the set of primes dividing some element

of {Dn : n ≥ 1} is {p : p - 2m and p ̸≡ ±1 (mod m)}. Furthermore if n0 is the

least n for which p divides the denominator of Dn, then n0 = pk − 1 for some

k ≥ 1.

If this conjecture is true it answers in the negative the question by Pisot ([Ral63],

p. 111) concerning whether there exist Jm(z) for m ̸= 3, 4, 6,∞ such that the

denominators of Jm(z) are bounded. Furthermore the conjecture says that (for

all m ≥ 3) if p ≡ 0 (mod m) or p ≡ ±1 (mod m), then Cn

Dn
∈ Zp for all n.

3.4 Cyclotomic Fields

In this section we discuss how the conjecture relates to the splitting of primes in

cyclotomic fields.

Let ζn = e2πi/n be a primitive nth root of unity. Then Q(ζn) is a cyclotomic

field whose ring of integers is Z[ζn]. The cyclotomic field Q(ζn) has a unique

maximal real subfield Q(ζn + ζ−1
n ), and [Q(ζn) : Q(ζn + ζ−1

n )] = 2. Let n = 2m;

then ζn + ζ−1
n = 2 cos(π/m) = λm. The ring of integers of Q(λm) is Z[λm] (see

[Was97], Proposition 2.16). Note also that the elements of Gm have entries in

Z[λm].
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We now describe how primes split in cyclotomic fields and their maximal real

subfields (see [Mar77], pages 108–110 and 118, and [Was97], Theorem 2.13).

Theorem 12. Fix n and let L = Q(ζn) and K = Q(ζn + ζ−1
n ). Let p ∈ Q be a

prime not dividing n. Then p splits into g = ϕ(n)/f distinct primes in L, where

f is the the smallest positive integer such that pf ≡ 1 (mod n). Also p splits into

g = ϕ(n)/2f distinct primes in K, where f is the the smallest positive integer

such that pf ≡ ±1 (mod n). In either case each prime has residue class f . In

particular, p splits completely in L iff p ≡ 1 (mod n) and splits completely in K

iff p ≡ ±1 (mod n).

Proof. The Galois group of the cyclotomic field, G = Gal(L/Q), is isomorphic to

(Z/nZ)∗. Since p - n it is unramified and splits into g distinct primes each with

inertial index f , where fg = |G| = ϕ(n). Let P be a prime over p and Ḡ be the

Galois group of OL/P over Z/p; by definition f =
∣∣Ḡ∣∣. Since Ḡ is the Galois

group of an extension of finite fields, it is cyclic and generated by the unique

frobenius element which sends every k̄ ∈ Z/p to k̄p. There is an isomorphism

from the decomposition group, D = {τ ∈ G : τQ = Q}, to Ḡ. The member of

D corresponding to the frobenius element is the frobenius automorphism σ; it

satisfies

σ(x) ≡ xp mod P for all x ∈ OL

and is the unique member of G with this property. Since L = Q(ζn) we have in

fact σ(ζn) = ζpn, and σ
f = 1G iff ζp

f

n = ζn iff pf ≡ 1 (mod n), which proves the

first part of the theorem.

If we restrict σ to K then it must be the frobenius automorphism of G′ =

Gal(K/Q), since it satisfies σ|K(x) ≡ xp mod Q for all x ∈ OK where Q is

any prime of OK lying above p and below P . We have σ|f
′

K = 1G′ iff ζp
f ′

n = ζ±1
n

iff pf
′ ≡ ±1 (mod n), which proves the second part of the theorem.
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If we let n = 2m then this theorem says that a prime p - 2m splits completely in

Z[λm] iff p ≡ ±1 (mod 2m). Note the similarity to the condition for a prime to

not appear in the denominators in Conjecture 11. There the condition is p ≡ ±1

(mod m), which is equivalent if m is odd but weaker if m is even. As an example,

consider the denominators of the coefficients of J12:

1 + 1z1 + 1z2 + 1z3 + 1z4 +
1

51
z5 + 1z6 +

1

5171
z7 + 1z8 +

1

71
z9

+
1

52
z10 + 1z11 +

1

52
z12 +

1

51
z13 +

1

5172
z14 +

1

53
z15 +

1

72
z16

+
1

5371171
z17 +

1

5271
z18 +

1

5271171191
z19 +

1

5471171
z20

+
1

73171191
z21 +

1

54171191
z22 +

1

5373171191
z23

+
1

5372171
z24 +

1

5672171191
z25 +

1

72171191
z26 +

1

5672171191
z27

+
1

5574171191
z28 +

1

55171191291
z29 +

1

5774171191
z30

Here the primes 5 and 7 appear in denominators while 11 and 13 do not, whereas

all four split into two primes in Z[λ12] with f = 2. Likewise 11, 13 and 23 all do

not appear in denominators, whereas only 23 splits completely in Z[λ12].

In any case it appears that the splitting of primes in Z[λm] seems to be behind

which primes appear in the denominators. Intuitively primes that split more

should be canceled by factors in the numerator and not appear in the denomina-

tor. However at this point we do not have a precise explanation for this behavior.

It does appear clear that Z[λm] is the proper ring in which to further investigate

properties of the behavior of the fourier coefficients.

35



3.5 Dwork’s Method

Dwork’s work ([Dwo69, Dwo73]) provides a method for proving integrality re-

sults for power series solutions to certain generalized hypergeometric differential

equations. This method was extended by Lian and Yau ([LY98]) and Zudilin

([Zud02]). In this section we describe Dwork’s method, and in the next section

we use it to partially solve Conjecture 11.

Let p be prime and define Cp to be the set of all p-integral rational numbers which

are not in Z− ∪ {0}. Define θ : Cp → Cp so that θ(x) is the unique number such

that pθ(x)−x ∈ Z∩[0, p−1]. If x = a/b where (a, b) = 1 and p - b, and θ(x) = c/d

where (c, d) and p - d (a, b, c, d ∈ Z, b, d > 0), then we have θ(x)p − x = pcb−ad
bd

.

For this to be an integer we must have d|pcb which implies d|b, and also b|ad

which implies b|d, so in fact b = d. We now have pθ(x) − x = pc−a
b

. We need to

choose c such that pc−a
b

∈ Z∩ [0, p−1]. Since (pac, b) = 1 we can choose c so that

c ≡ ap−1 (mod b). This means c = a(p−1+ℓb)+mb for some ℓ,m ∈ Z, since both

p−1 and c are determined only mod b. Let n = aℓ +m, so that c = ap−1 + nb.

Plugging in we get pc−a
b

= p(a(p−1+nb)−a
b

= a(1+kb)+pnb−a
b

= ak+pn where k is fixed

and depends on the particular choice of p−1. We choose the unique n so that

ak + pn ∈ [0, p − 1], and this determines c uniquely. Note that if x ∈ Z+ then

θ(x) ∈ Z+ as well.

If a ∈ (0, b) then c ∈ (0, b) as well, since we require pc − a ∈ [0, bp − b] which

implies pc ∈ (0, bp). Since c ≡ ap−1 (mod b) it is determined uniquely if we know

p mod b, and given c we can determine a uniquely from the same congruence. We

have thus proven the following lemma, which is Lemma 10 of [Zud02].

Lemma 13. Given b ≥ 2, (b, p) = 1, let S = {a/b : a ∈ (0, b), (a, b) = 1} ⊆ Cp.

Then θ : S → S is a bijection, with θ(a/b) = c/b where c ∈ (0, b) and c ≡ ap−1
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(mod b).

We can describe the relationship between x and θ(x) more simply by looking

at their p-adic expansions. Since x is p integral, it can be written uniquely

as
∑∞

n=0 anp
n, where an ∈ Z ∩ [0, p − 1]. Then θ(x) = 1 +

∑∞
n=0 an−1p

n, and

pθ(x) − x = p − a0. The significance of pθ(x) − x is that it is the smallest non-

negative integer k such that x+ k is divisible by p, and thus corresponds to the

first term in the rising factorial of x that will be divisible by p.

We prove a variant of Lemma 6. This is a simplified version of Lemmas 2.1

and 3.2 of [Dwo73].

Lemma 14. Given a, b ∈ Cp, let A(k) = (a)k(b)k
(k!)2

. Let k = k0 + k1p where

k0 ∈ [0, p). Then

vp(A(k)) ≥ ρ(k0, a)[1 + vp(k1 + θ(a))] + ρ(k0, b)[1 + vp(k1 + θ(b))] (3.14)

where

ρ(k0, a) =


1 if k0 > pθ(a)− a;

0 otherwise.

(3.15)

In particular, F (a, b, 1; z) =
∑∞

k=0A(k)z
k ∈ Zp[[z]].

Proof. It suffices to prove vp((a)k/k!) ≥ ρ(k0, a)[1 + vp(k1 + θ(a))] for all a ∈ Cp

and k ≥ 0. First note that

(a)k
k!

=
(a)pk1
(pk1)!

· (a+ pk1)k0∏k0
m=1(pk1 +m)

.

For j ≥ 1 and i ≥ 0, the interval [1 + ipj, (i+ 1)pj] is a complete set of represen-

tatives mod pj and exactly one element (namely the last one) is divisible by pj.

Similarly the set {a+ n : n ∈ [ipj, (i+ 1)pj − 1]} is a complete set of representa-

tives mod pj and exactly one element of the set (perhaps earlier than the last
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element) is divisible by pj. It follows vp((a)pk1/(pk1)!) ≥ 0, and so we examine

(a+ pk1)k0∏k0
m=1(pk1 +m)

,

which has k0 terms in each the numerator and denominator. No term in the

denominator is divisible by p, and at most one term in the numerator is divisible

by p. From the definition of θ we know that vp(a+pk1+n) ≥ 1 iff n = pθ(a)−a+ℓp

for some ℓ ∈ Z. Noting that pθ(a)−a ∈ [0, p), we see that such a term a+pk1+n

exists in the numerator iff pθ(a) − a ≤ k0 − 1 iff ρ(k0, a) = 1. Furthermore for

this n we have vp(a+ pk1 + n) = vp(a+ pk1 + pθ(a)− a) = 1+ vp(k1 + θ(a)).

We now prove a lemma that will allow us to considerably simplify Dwork’s proof

in the special case we are concerned with. Although some ideas related to this

lemma appear in Dwork’s work it does not appear to be explicitly stated.

Lemma 15. Given a, b ∈ Cp, let A(k) = (a)k(b)k
(k!)2

and A′(k) = (θ(a))k(θ(b))k
(k!)2

for

k ≥ 0. Let k = k0 + pk1 where k ∈ [0, p) and k1 ≥ 0. If either ρ(k0, a) = 1

or ρ(k0, b) = 1 then A(k) ≡ 0 (mod p). Otherwise A(k) = A(k0)B where B ≡

A′(k1) (mod p).

Proof. If either ρ(k0, a) = 1 or ρ(k0, b) = 1 then A(k) ≡ 0 (mod p) follows imme-

diately from Lemma 14. So assume ρ(k0, a) = ρ(k0, b) = 0. We will separate A(k)

into products of k0 terms and pk1 terms as was done in the proof of Lemma 14,

but this time the k0 terms will be the first terms rather than the last ones.

We have A(k) = A(k0)B, where

B =
(a+ k0)pk1(b+ k0)pk1

[(k0 + 1)pk1 ]
2

.

Consider the set of factors of the numerator {a+ k0 + j : p(m− 1) ≤ j < pm}

for each 1 ≤ m ≤ k1, and the corresponding set of factors of the denominator
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{k0 + 1 + j : p(m− 1) ≤ j < pm)}. Each set forms a complete set of representa-

tives mod p, and so all terms not divisible by p cancel each other mod p. The term

divisible by p in the denominator lies in the interval [k0 + p(m− 1)+ 1, k0 + pm],

and so must be pm. The term divisible by p in the numerator lies in the interval

[a+k0+p(m−1), a+k0+pm−1], and so must be pθ(a)+p(m−1) if pθ(a)−a ≥ k0

(given a+k0+p(m−1)+j, where j ∈ [0, p), let j = pθ(a)−a−k0). The condition

pθ(a)− a ≥ k0 is equivalent to ρ(k0, a) = 0, which we have assumed to be true.

Taking the product over all 1 ≤ m ≤ k1, we get
(θ(a))k1

k1!
. After repeating the

argument with b, the lemma follows.

We now prove a special case of Theorem 4.1 of [Dwo73]. We follow Dwork’s proof,

but simplify details where possible.

Theorem 16 (Dwork). Let F (a, b, c; z) and F1(a, b; z) be defined as in (3.4)

and (3.5). Let a, b ∈ Cp. Then

F1(θ(a), θ(b); z
p)

F (θ(a), θ(b), 1; zp)
≡ p

F1(a, b; z)

F (a, b, 1; z)
(mod pZp[[z]]). (3.16)

Proof. Let F (z) = F (a, b, 1; z) =
∑∞

k=0A(k)z
k and

F1(z) = F1(a, b; z) =
∑∞

k=1A(k)D(k)zk where A(k) = (a)k(b)k
(k!)2

and

Dx(k) =
k−1∑
j=0

1

x+ j
; (3.17)

D(k) = Da(k) +Db(k)− 2D1(k). (3.18)

Let F ′(z) = F (θ(a), θ(b), 1; z) =
∑∞

k=0A
′(k)zk and F ′

1(z) = F1(θ(a), θ(b); z) =∑∞
k=1A

′(k)D′(k)zk where A′(k) = (θ(a))k(θ(b))k
(k!)2

and D′(k) = Dθ(a)(k) +Dθ(b)(k)−

2D1(k). With this notation we wish to prove that

F ′
1(z

p)

F ′(zp)
≡ p

F1(z)

F (z)
(mod pZp[[z]]). (3.19)
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Note that by Lemma 14 we have F (z), F ′(z) ∈ Zp[[z]] and, since both their

constant terms are 1, by Lemma 5 we also have 1/F (z), 1/F ′(z) ∈ Zp[[z]]. On

the other hand in general F1(z), F
′
1(z) ∈ Qp[[z]].

Let Gx(z) =
∑∞

k=1A(k)Dx(k)z
k and G′

x(z) =
∑∞

k=1A
′(k)Dθ(x)(k)z

k. Then

F1(z) = Ga(z)+Gb(z)−2G1(z), F
′
1(z) = G′

a(z)+G
′
b(z)−2G′

1(z), and by linearity

to prove (3.19) it suffices to prove

G′
x(z

p)

F ′(zp)
≡ p

Gx(z)

F (z)
(mod pZp[[z]]) (3.20)

for all x ∈ {a, b, 1}. This is equivalent to

F (z)G′
x(z

p)− pF ′(zp)Gx(z) ∈ pZp[[z]] (3.21)

for all x ∈ {a, b, 1} since F (z), F ′(z), 1/F (z), 1/F ′(z) ∈ Zp[[z]].

Let F (z)G′
x(z

p) − pF ′(zp)Gx(z) =
∑∞

k=0Cx(k)z
k. Then proving (3.21) for all

x ∈ {a, b, 1} is equivalent to proving

Cx(k) ≡ 0 (mod p) for all k ≥ 0, x ∈ {a, b, 1} , (3.22)

where, letting k = k0 + pk1 (k0 ∈ [0, p)), we have by calculation

Cx(k0 + pk1) =

k1∑
j=0

A(k0 + pj)A′(k1 − j)[Dθ(x)(k1 − j)− pDx(k0 + pj)]. (3.23)

Consider Dx(k0 + pj) − Dx(pj) =
∑k0−1

i=0
1

x+i+pj
. The only numbers of the form

x+ i+ pj divisible by p are those for which i = pθ(x)−x+ pℓ for some ℓ ∈ Z; for

i ∈ [0, k0) the only possible value is i = pθ(x) − x which occurs iff ρ(k0, x) = 1.

It follows

Dx(k0 + pj)−Dx(pj) ≡
1

p

ρ(k0, x)

j + θ(x)
(mod Zp). (3.24)

Similarly the only denominators in the sum for Dx(pj) that are divisible by p are

those of the form x+ pθ(x)− x+ pℓ for ℓ ∈ [0, j), and it follows

Dx(pj) ≡
1

p
Dθ(x)(j) (mod Zp). (3.25)
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From (3.24) and (3.25) it follows pDx(k0 + pj)−Dθ(x)(j) ≡ ρ(k0,x)
j+θ(x)

(mod p), and

then from Lemma 14 it follows

A(k0 + pj)[pDx(k0 + pj)−Dθ(x)(j)] ≡ 0 (mod p). (3.26)

Note that we have used here the fact that x ∈ {1, a, b}. If ρ(k0, x) = 0, then (3.26)

is obvious. Note that ρ(k0, 1) = 0 for all k0 ∈ [0, p). Otherwise (x = a or x = b)

we have vp(A(k0 + pj)) ≥ 1 + vp(j + θ(x)) by Lemma 14.

From (3.23) and (3.26) it then follows

Cx(k0+pk1) ≡
k1∑
j=0

A(k0+pj)A
′(k1−j)[Dθ(x)(k1−j)−Dθ(x)(j)] (mod p). (3.27)

By Lemma 15, if ρ(k0, a) = 1 or ρ(k0, b) = 1, then A(k0+ pj) ≡ 0 (mod p) for all

j and thus Cx(k0 + pk1) ≡ 0 (mod p). Otherwise A(k0 + pj) = A(k0)B, where

B ≡ A′(j) (mod p), and we have

Cx(k0 + pk1)

≡
k1∑
j=0

A(k0)A
′(j)A′(k1 − j)[Dθ(x)(k1 − j)−Dθ(x)(j)]

≡ A(k0)

[
k1∑
j=0

A′(j)A′(k1 − j)Dθ(x)(k1 − j)−
k1∑
j=0

A′(j)A′(k1 − j)Dθ(x)(j)

]

≡ A(k0)

[
k1∑

j′=0

A′(k1 − j′)A′(j′)Dθ(x)(j
′)−

k1∑
j=0

A′(j)A′(k1 − j)Dθ(x)(j)

]

≡ 0 (mod p),

where we have used the substitution j′ = k1 = j in the first sum. This holds for

all x, and thus the theorem follows from (3.22).

Lemma 17 (Dwork’s Lemma). Let f(z) ∈ 1+ zQp[[z]]. Then f(z) ∈ 1+ zZp[[z]]

if and only if

f(zp)/(f(z))p ∈ 1 + pzZp[[z]].
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Proof. See [Kob84], Chapter IV, Lemma 3.

We now prove a key corollary to Theorem 16.

Corollary 18. If a, b ∈ Cp and {θ(a), θ(b)} = {a, b} then

exp

(
F1(a, b; z)

F (a, b, 1; z)

)
∈ Zp[[z]]. (3.28)

Proof. Dwork remarks that this is an “immediate consequence” of Theorem 16.

Lian and Yau ([LY98], Corollary 6.7) and Zudilin ([Zud02], Lemma 5) provide

proofs using Dwork’s Lemma. For the special case we are concerned with here,

let f(z) = F1(a, b; z)/F (a, b, 1; z). Then f(z) ∈ zQ[[z]], and exp(f(z)) ∈ 1 +

zQ[[z]] ⊆ 1 + zQp[[z]]. By Theorem 16, f(zp)− pf(z) ∈ pzZp[[z]], so let f(zp)−

pf(z) = pg(z) where g(z) ∈ zZp[[z]]. Then exp(f(zp))
exp(f(z))p

= exp(f(zp) − pf(z)) =

exp(pg(z)) ∈ 1 + pzZp[[z]], since exp(pg(z)) = 1 +
∑∞

k=1
pk

k!
g(z)k and vp(k!) <

k
p−1

≤ k by (3.6). Now apply Dwork’s Lemma to obtain (3.28).

3.6 Main Theorem

We now prove the following special case of Conjecture 11.

Theorem 19. Let m ≥ 3. Let Jm(z) =
∑∞

n=−1 anq
n. Then ana

n
−1 ∈ Zp for all

odd primes p ≡ 1 (mod 4m).

Proof. By Theorem 9 it suffices to prove that

exp

(
F1(α, β; z)

F (α, β, 1; z)

)
∈ Zp[[z]]. (3.29)

By Corollary 18 it suffices to show that {θ(α), θ(β)} = {α, β}. From (3.3) we

have

α =
m− 2

4m
, β =

m+ 2

4m
. (3.30)
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Now {θ(α), θ(β)} = {α, β} follows from Lemma 13.

It thus follows from Dirichlet’s theorem on primes in arithmetic progressions that

ana
n
−1 ∈ Zp for infinitely many primes p. Still this is much weaker than we should

be able to prove. Let us make another conjecture.

Conjecture 20. For p prime, if exp
(

F1(2α,2β;z)
F (2α,2β,1;z)

)
∈ Zp[[z]] then exp

(
F1(α,β;z)
F (α,β,1;z)

)
∈

Zp[[z]].

Theorem 21. Assume Conjecture 20 is true. Let m ≥ 3.

Let Jm(z) =
∑∞

n=−1 anq
n. Then ana

n
−1 ∈ Zp for all odd primes p ≡ ±1 (mod 2m).

Proof. By Theorem 9 and Conjecture 20 it suffices to prove that

exp

(
F1(2α, 2β; z)

F (2α, 2β, 1; z)

)
∈ Zp[[z]]. (3.31)

By Corollary 18 it suffices to show that {θ(2α), θ(2β)} = {2α, 2β}. From (3.3)

we have

2α =
m− 2

2m
, 2β =

m+ 2

2m
. (3.32)

If p ≡ 1 (mod 2m), then θ(2α) = 2α and θ(2β) = 2β by Lemma 13. If p ≡ −1

(mod 2m), then θ(2α) = 2β and θ(2β) = 2α, since −(m−2) ≡ m+2 (mod 2m).

In either case {θ(2α), θ(2β)} = {2α, 2β} and the theorem is proven.

Note this is still not as strong as the conjecture, which claims ana
n
−1 ∈ Zp for all

odd primes p ≡ ±1 (mod m). Only when m is odd are the two are equivalent.

It is interesting that it seems easier to prove the case p ≡ ±1 (mod 2m), which

corresponds to the case in which p splits in Z[λm].
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CHAPTER 4

Modular Forms for Hecke Groups

In this chapter we discuss the fourier coefficients of modular forms and cusp forms.

In the first section we show how to define these forms in terms of the modular

function Jm and what that implies for the properties of their coefficients. We

then attempt to derive the Eisenstein series for the Hecke groups Gm directly,

which would provide an alternate method to determine their coefficients. For the

arithmetic cases m = 3, 4, 6 the coefficients can be described exactly, but even

for the simplest non-arithmetic case m = 5 we run into difficulties related to

characterizing the elements of G5, an unresolved problem that has been studied

since at least the 1950s. In the non-arithmetic cases the methods of the previous

chapter seem the best way to determine information about the fourier coefficients.

4.1 Modular Forms and Cusp Forms

Following Hecke ([Hec38]), we say that f is a modular form of weight k for Gm

if f is holomorphic on H∗, f(T (z)) = f(z) and f(S(z)) = (−iz)kγf(z), where

γ = (−1)ni and ni is the order of the zero at i. The weight k must be a rational

number and its two smallest possible values are 4/(m− 2) and 2m/(m− 2). The

number of linearly independent modular forms of weight k is less than or equal

to
⌊
k
2
(1
2
− 1

m
)
⌋
+ 1 =

⌊
k(m−2)

4m

⌋
+ 1. Therefore there is at most one function (up
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to a constant factor) for each of these two smallest weights. Hecke proves that

these functions exist and are given by

f̃0(z) =

(
J ′
m(z)

2

Jm(z)(Jm(z)− 1)

)1/(m−2)

f̃i(z) =

(
J ′
m(z)

m

Jm(z)m−1(Jm(z)− 1)

)1/(m−2)

.

where γ = 1 for f̃0 and γ = −1 for f̃i. Furthermore every modular form for Gm,

for any weight, is a polynomial in f̃0 and f̃i.

Considering the Fourier expansion of J at i∞, let Ĵ(q) = J(z). Then

f̂0(q) =

((
2πi

λm

)2
q2Ĵ ′

m(q)
2

Ĵm(q)(Ĵm(q)− 1)

)1/(m−2)

f̂i(q) =

((
2πi

λm

)m
qmĴ ′

m(q)
m

Ĵm(q)m−1(Ĵm(q)− 1)

)1/(m−2)

.

Multiplying by appropriate constants gives

f0(q) =

(
q2Ĵ ′

m(q)
2

Ĵm(q)(Ĵm(q)− 1)

)1/(m−2)

fi(q) =

(
(−1)m

qmĴ ′
m(q)

m

Ĵm(q)m−1(Ĵm(q)− 1)

)1/(m−2)

.

Both f0(q) and fi(q) have q-series starting with the constant term 1, and it follows

that for m = 3 we have f0(q) = E4(z) and fi(q) = E6(z) near i∞ (see the next

section for the definition of the Eisenstein series Ek).

Fixing m let K = K(q) = qĴm(qAm) = 1 +
∑∞

n=1 cnq
n where cn ∈ Q for all n.

Then

f0(qAm) =

(
(K − qK ′)2

K(K − q)

)1/(m−2)

fi(qAm) =

(
(K − qK ′)m

Km−1(K − q)

)1/(m−2)

.
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We are interested in the (rational) coefficients of Fj =
(

(K−qK′)j

Kj−1(K−q)

)1/(m−2)

for

j = 2 and j = m.

If the coefficients of K are p-adic integers for any prime p not dividing m − 2,

then the coefficients of Fj are also p-adic integers. The reason is as follows. Note

that the numerator and denominator of Fj both have constant term 1. It follows

from Lemma 5 that (K−qK′)j

Kj−1(K−q)
= 1 + qP (q) for some power series P (q) and that

all coefficients of P (q) are p-adic integers. We then have

(1 + qP (q))1/(m−2) =
∞∑
n=0

(
1

m− 2
− n+ 1

)
n

(qP (q))n

n!

and by Problem 138 of Part VIII, Chapter 3 of [PS98] the only additional primes

that can divide the denominators of the coefficients of (1 + qP (q))1/(m−2) are

divisors of m− 2.

Note that the primes for which coefficients of K are p-adic integers in Conjectures

and Theorems 11, 19 and 21 all satisfy the condition p - m − 2, and so p-adic

results for K apply to the Eisenstein series as well.

We construct the canonical cusp form for Gm as the analog of the discriminant

modular form:

∆(z) = E4(z)
3 − E6(z)

2.

It is a cusp form of weight 12. Viewing the forms as functions of q we can consider

∆(qAm) = E4(qAm)
3 − E6(qAm)

2, which will have rational integer coefficients.

Trivially if the coefficients of both E4 and E6 are p-adic integers for any p, then

the coefficients of ∆ are p-adic integers for the same p, so we have information

for cusp forms as well.
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4.2 Eisenstein Series

The normalized Eisenstein series of even weight k for G3 = Γ(1) = PSL2(Z) is

Ek(z) =
1

2ζ(k)

∑′

c,d∈Z

(cz+ d)−k =
1

2

∑
c,d∈Z

(c,d)=1

(cz+ d)−k = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n (4.1)

(see, for example, [Kob93], p. 111) where
∑′ means to exclude the case in which

both c = 0 and d = 0 and where ζ(k) =
∑∞

n=1 n
−k is the Riemann zeta function.

Here σk(n) =
∑

d|n,d>0 d
k and Bk are the Bernoulli numbers defined by setting

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
.

For even k > 0 there is the identity ([Kob93], p. 110)

ζ(k) = −(2πi)k

2(k!)
Bk. (4.2)

The series for Ek converges absolutely for k ≥ 3 and Ek is a modular form of

weight k for G3 for even k ≥ 4, meaning

Ek(γz) = (cz + d)kEk(z)

for all γ = ( a b
c d ) ∈ G3. In particular Ek(T (z)) = Ek(z) and Ek(S(z)) = zkEk(z).

There is another way to interpret the Eisenstein series which leads to a general-

ization for the other Hecke groups (see [Leh64], p. 282 and [Iwa97], Chapter 3).

Let Γ∞ = ⟨T3⟩ be the subgroup of G3 stabilizing ∞. Then the right cosets Γ∞γ,

where γ ∈ G3, consist of matrices all with the same bottom row. Furthermore if

γ = ( a b
c d ) and γ

′ = ( A B
c d ) have the same bottom row then they must be in the

same coset, since γ′γ−1 is upper-triangular and thus in Γ∞. Also note that as

γ and −γ are equivalent in G3, it follows a matrix with bottom row (c d) and

bottom row (−c − d) are both in the same coset.
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It follows

Ek(z) =
1

2

∑
c,d∈Z

(c,d)=1

(cz + d)−k =
∑

γ∈Γ∞\Γ(1)

jγ(z)
−k

where jγ(z) = cz + d for γ = ( a b
c d ). This function satisfies jαβ(z) = jα(βz)jβ(z).

Now for general Γ = Gm we have Γ∞ = ⟨Tm⟩ (see [Shi94], Proposition 1.17).

Define

Ek(z) =
∑

γ∈Γ∞\Γ

jγ(z)
−k. (4.3)

Then for α ∈ Γ

Ek(αz) =
∑

γ∈Γ∞\Γ

jγ(αz)
−k

= jα(z)
k
∑

γ∈Γ∞\Γ

jγα(z)
−k

= jα(z)
kEk(z)

showing Ek is a modular form of weight k. Note that as γ runs through a

complete set of representatives of Γ∞ \ Γ, so does γα, since if Γ∞γ
′ is a coset

then Γ∞γ
′ = Γ∞γα where γ is such that γ′α−1 ∈ Γ∞γ; also γ′γ−1 ∈ Γ∞ iff

γ′α(γα)−1 ∈ Γ∞.

The same argument as for G3 shows that the cosets of Γ∞ \ Γ consist of exactly

the matrices of Γ having the same bottom row (modulo multiplicative factor ±1).

We can further group these cosets into double cosets Γ∞ \ Γ/Γ∞ in which each

double coset (except Γ∞ itself) is

{( ∗ ∗
c d+ncλ ) ∈ Γ : n ∈ Z} (4.4)

where λ = λm, c and d are fixed, and c > 0 (cf. [Iwa97], Section 2.5). The

Eisenstein series (4.3) then becomes

Ek(z) = 1 +
∑

1̸=γ∈Γ∞\Γ/Γ∞

∑
n∈Z

(c(z + nλ) + d)−k (4.5)
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Let F (w) =
∑

n∈Z f(w + nλ) where f(w) = (c(z + w) + d)−k. Then F (w) has

period λ, and so has a Fourier expansion

F (w) = λ−1
∑
n∈Z

(∫ λ

0

∑
k∈Z

f(x+ kλ)e(−nx/λ) dx

)
e(nw/λ)

where e(x) = e2πix. Reversing the order of summation and integration, and

making the change of variable y = x + kλ as in the standard proof of Poisson

summation results in

F (w) = λ−1
∑
n∈Z

(∫ ∞

−∞
f(y)e(−ny/λ) dy

)
e(nw/λ).

Now let w = 0 to give

∑
n∈Z

(c(z + nλ) + d)−k = λ−1
∑
n∈Z

(∫ ∞

−∞
(c(z + y) + d)−ke(−ny/λ) dy

)
.

Substituting into (4.5) gives

Ek(z) = 1 + λ−1
∑

1̸=γ∈Γ∞\Γ/Γ∞

∑
n∈Z

∫ ∞

−∞
(c(z + y) + d)−ke(−ny/λ) dy.

Making the change of variable v = y + z + d/c, we get

Ek(z) = 1 + λ−1
∑

1 ̸=γ∈Γ∞\Γ/Γ∞

∑
n∈Z

e(nz/λ)e(nd/(cλ))

∫ ∞+it

−∞+it

(cv)−ke(−nv/λ) dv

where z = s + it, t > 0. Now following the argument in [Iwa97], pp. 50–51, we

determine that

Ek(z) = 1 +
∞∑
n=1

anq
n (4.6)

where

an =

(
2π

λi

)k
nk−1

Γ(k)

∑
c>0

c−k
∑

γ=( ∗ ∗
c d )∈Γ∞\Γ/Γ∞

e

(
nd

cλ

)
. (4.7)
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4.3 Eisenstein Series of Weight 4

Let us now concentrate on the case k = 4. For anyGm there is exactly one linearly

independent modular form of weight 4 and it must be a constant multiple of

f0(q)
m−2 =

q2Ĵ ′
m(q)

2

Ĵm(q)(Ĵm(q)− 1)
. (4.8)

Since this series starts with the constant term 1 as does the Eisenstein series of

weight 4 given by (4.6), it follows the two must be equal.

We next derive the Eisenstein series using (4.7) in the arithmetic casesm = 3, 4, 6

and then attempt to derive the series in the simplest non-arithmetic case m = 5,

pointing out the obstacles that arise.

4.3.1 The Case m = 3

The group G3 is just PSL2(Z) and λ3 = 1, and so by (4.4) each double coset

with c > 0 corresponds to the pairs c, d with (c, d) = 1 and 0 ≤ d < c. It follows

50



that the coefficients (4.7) of the Eisenstein series of even integer weight k are

an =

(
2π

i

)k
nk−1

(k − 1)!

∑
c>0

c−k
∑
0≤d<c

(c,d)=1

e

(
nd

c

)

=

(
2π

i

)k
nk−1

(k − 1)!

∑
c>0

c−k
∑
d|(c,n)

dµ(c/d)

=

(
2π

i

)k
nk−1

(k − 1)!

∑
d|n

d
∑
c>0

d|c

c−kµ(c/d)

=

(
2π

i

)k
nk−1

(k − 1)!

∑
d|n

d
∑
C>0

(Cd)−kµ(C)

=

(
2π

i

)k
nk−1

ζ(k)(k − 1)!

∑
d|n

d1−k

= − 2k

Bk

∑
d|n

(n
d

)k−1

= − 2k

Bk

σk−1(n)

where we have used the Ramanujan sum

∑
0≤d<c

(c,d)=1

e

(
nd

c

)
=
∑
d|(c,n)

µ(c/d)d,

the identity
∑∞

n=1 µ(n)n
−s = 1/ζ(s) (see [Mur01], Exercises 1.1.12 and 1.2.2),

and (4.2). Note that this agrees with (4.1) and gives a precise description of the

coefficients of the Eisenstein series for all even weights k.

4.3.2 The Cases m = 4 and m = 6

Both G4 and G6 are arithmetic groups. Here we have λ4 =
√
2 and λ6 =

√
3, and

Z[
√
2] and Z[

√
3] are both Euclidean domains. The matrices in Gm for m = 4, 6

are easy to describe.
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Theorem 22. The matrices in Gm for m = 4, 6 are those matrices in SL2(R) of

the form aλ b

c dλ

 and

 a bλ

cλ d


with a, b, c, d ∈ Z.

Proof. Detailed proofs are in [Hut02, You04]. They follow along the lines of

similar algebraic proofs for the modular group and some congruence subgroups

(see for example [DS05], Exercises 1.1.1 and 1.2.4).

Since the determinants are λ2ad−bc and ad−λ2bc respectively, we see that given

a pair of integers c, d with (c, d) = 1, there exists a matrix of the first type in Gm

iff λ2 - c and of the second type iff λ2 - d.

It follows that for m = 4 or m = 6 the coefficients (4.7) of the Eisenstein series

of weight k are

an =

(
2π

λi

)k
nk−1

(k − 1)!

 ∑
c∈Z+

(c,M)=1

c−k
∑
0≤d<c

(c,d)=1

e

(
nd

c

)
+
∑
c∈Z+

(cλ)−k
∑

0≤d<Mc

(Mc,d)=1

e

(
nd

Mc

)
where M = λ2. For arbitrary c, n,M ∈ Z+, the Ramanujan sum

∑
0≤d<Mc

(Mc,d)=1

e

(
nd

Mc

)
=

∑
d|(Mc,n)

µ(Mc/d)d.
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It follows that for M prime∑
c∈Z+

(c,M)=1

c−k
∑
0≤d<c

(c,d)=1

e

(
nd

c

)
+
∑
c∈Z+

(cλ)−k
∑

0≤d<Mc

(Mc,d)=1

e

(
nd

Mc

)

=
∑
c∈Z+

(c,M)=1

c−k
∑
d|(c,n)

µ(c/d)d+ λ−k
∑
c∈Z+

c−k
∑

d|(Mc,n)

µ(Mc/d)d

=
∑
d|n

d
∑

c>0,(c,M)=1

d|c

c−kµ(c/d) + λ−k
∑
d|n

d
∑
c>0

d|Mc

c−kµ(Mc/d)

=
∑
d|n

d1−k
∑
C>0

(dC,M)=1

C−kµ(C) + λ−k
∑
d|n

d1−kMk
∑
C>0

M |dC

C−kµ(C)

=
∑
d|n

d1−k
∑
C>0

C−kµ(C) + (λk − 1)
∑
d|n

d1−k
∑
C>0

M |dC

C−kµ(C)

=
σk−1(n)

nk−1ζ(k)
+ (λk − 1)

∑
d|n

d1−k
∑
C>0

M |dC

C−kµ(C)

=
σk−1(n)

nk−1ζ(k)
+ (λk − 1)

∑
d|n
M |d

d1−k 1

ζ(k)
+
∑
d|n
M -d

d1−k
∑
C>0

M |C

C−kµ(C)


=

σk−1(n)

nk−1ζ(k)
+ bn,M(λk − 1)

σk−1(n/M)

nk−1ζ(k)
+ (λk − 1)

σk−1(N)

Nk−1(1−Mk)ζ(k)

=
σk−1(n)

nk−1ζ(k)
+ bn,M(λk − 1)

σk−1(n/M)

nk−1ζ(k)
− σk−1(N)

(λk + 1)Nk−1ζ(k)

where N = n/M vM (N), bn,M = 1 if M |n and 0 otherwise, and where we have

made the substitutions C = c/d and C = Mc/d respectively in the sums in the

fourth line. To calculate X =
∑

C>0

M |C
C−kµ(C), let Y =

∑
C>0

M -C
C−kµ(C). Then

ζ(k)−1 = X + Y , and X = −M−kY (if M is prime). Solving for X we get

X = ((1−Mk)ζ(k))−1.

Now let k = 4. We have

an =
24 · 3 · 5
M2

(
σ3(n) + bn,M(M2 − 1)σ3(n/M)− M3vM (n)σ3(N)

(M2 + 1)

)
.
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Since σ3(n) = σ3(N)σ3(M
vM (n)) ≥ M3vM (n)σ3(N) > M3vM (n)σ3(N)

(M2+1)
, it follows an >

0. (The same argument holds for general k.)

For M = 2 it is clear an ∈ Z+. We can calculate the Eisenstein series for m = 4

to be

E4(z) = 1 + 48q + 624q2 + 1344q3 + 5232q4 + 6048q5 + 17472q6 + 16512q7

+ 42096q8 + 36336q9 + 78624q10 +O(q11)

which agrees with a calculation using (4.8) (here A4 = 2−8).

For M = 3,

an =
8

3

(
10σ3(n) + 80bn,3σ3(n/3)− 33v3(n)σ3(N)

)
.

If 3 - n then an = 8
3
(9σ3(n)), and if 3|n then

10σ3(n)+80σ3(n/3) = 10σ3(N)(σ3(3
v3(n))+8σ3(3

v3(n/3))) ≡ 0 (mod 3). In either

case an ∈ Z+. We can calculate the Eisenstein series for m = 6 to be

E4(z) = 1 + 24q + 216q2 + 888q3 + 1752q4 + 3024q5 + 7992q6 + 8256q7

+ 14040q8 + 24216q9 + 27216q10O(q11).

This also agrees with a calculation using (4.8) (here A6 = 2−23−3).

4.3.3 The Case m = 5

We now look even more specifically at the Eisenstein series of weight 4 for G5.

First note that λ = λ5 = 2 cos(π/5) = 1
2
(1 +

√
5). It is a root of t2 − t − 1,

the other root of which is λ′ = 1
2
(1 −

√
5); we have λ + λ′ = 1, λλ′ = −1 and

λ2 = λ+ 1.

Lemma 23. Z[λ] is a Euclidean domain.
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Proof. We follow the standard proof technique as in [ER99], Chapter 2. The norm

function is the usual one: |N(a+ bλ)| = |(a+ bλ)(a+ bλ′)| = |a2 + ab− b2|.

Given α, β ∈ Z[λ], it follows α/β = r + sλ ∈ Q[λ] and so choose γ = m + nλ ∈

Z[λ] such that |r −m| ≤ 1/2 and |s− n| ≤ 1/2. It then suffices to show that

|N(α/β − γ)| < 1, which follows since |(r −m)2 + (r −m)(s− n)− (s− n)2| ≤

1/2 < 1.

By Dirichlet’s Unit Theorem, the group of units of Z[λ] is the product of ±1 and

the infinite cyclic group generated by a single fundamental unit, chosen to be the

minimal unit a + bλ > 1. If a + bλ is a unit, then a2 + ab − b2 = ±1, and so

a = −b±
√
5b2±4
2

. The minimal positive value of (a − 1) + bλ = 2bλ−b−2±
√
5b2±4

2
is

achieved when b = 1 and a = 0. It follows λ is the fundamental unit, and all

units are of the form ±λk for k ∈ Z. In terms of the Z-basis (1, λ) for Z[λ], we

have λk = Fk + Fk+1λ and λ−k = (−1)k(Fk+1 − Fkλ) for k > 0 where Fk is the

kth Fibonacci number (defined so that F0 = 0, F1 = 1, and Fk = Fk−2 +Fk−1 for

k ≥ 2).

The primes Z split in Z[λ] as follows (see [Mar77], p. 74). The only ramified

prime is 5 =
√
5
2
, where

√
5 = 2λ − 1. The prime 2 and all odd primes not

congruent to ±1 mod 5 remain prime. Odd primes p congruent to ±1 mod 5

split into p = (p, n+
√
5)(p, n−

√
5) where n2 ≡ 5 (mod p).

The residue A5 of the Fourier series of J5 can be calculated to be ([Ral63])

A5 =

√
5(2 +

√
5)

√
5

2653
. (4.9)

The elements of G5 have been investigated by Leutbecher ([Leu67], [Leu74]) and

Rosen ([Ros54], [Ros86]). In particular Leutbecher ([Leu67]) proves that every

element of Q(λ) is a cusp of some matrix of G5. Furthermore it is easy to show

that there is only one matrix in G5 for each cusp. Since Z[λ] is a UFD, we
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can write the cusp as a/c where a, c ∈ Z[λ], (a, c) = 1, and this representation

is unique up to units. If A = ( a b
c d ) and C =

(
µa B
µc D

)
are two matrices in G5

with the same cusp a/c (here µ is a unit), then C−1A ∈ Γ∞ = ⟨T5⟩. Since

C−1A =
(
Da−Bc Db−Bd

0 µ

)
it follows µ = ±1.

The following is a proof of Leutbecher’s theorem which fills in some details.

Theorem 24. (Leutbecher) Let α ∈ Q(λ). Then there exists some ( a b
c d ) ∈ G5

such that b/d = α.

Proof. We present an algorithm for determining M ∈ G5 such that M(α) = 0.

It follows M−1(0) = α and if M−1 = ( a b
c d ) then b/d = α. The algorithm is as

follows. Given α ∈ Q(λ), first apply T n where n is the unique integer such that

−λ/2 < α + nλ ≤ λ/2. If α + nλ = 0 we are done; otherwise apply S to get

α′ = −1
α+nλ

. Now repeat the process with α′. We must prove this algorithm always

terminates.

Given α ∈ (−λ/2, λ/2], let α = r + sλ = β/γ, where r, s ∈ Q and β, γ ∈ Z[λ],

(β, γ) = 1. Note that r, s are unique and β, γ are unique up to units. Also r and

γ are unchanged if we apply T n to α. Let p = |rN(γ)| and q = |N(γ)|. Then p, q

are unchanged if T n is applied to α or γ is multiplied by a unit. Furthermore p, q

are both non-negative integers, since we can write α = β
γ
· γ̄
γ̄
= m

N(γ)
+ nλ

N(γ)
= r+sλ

where m,n ∈ Z and γ̄ is the conjugate of γ under λ 7→ λ′. It follows p = ±m.

Letting α = ±p+λp′

q
, it follows p′ = ±sq = ±n, also an integer.

Let G(p, q) = 5p2 + 4pq + 2q2. This is a positive definite quadratic form whose

minimal positive value is 2, which occurs when p = 0 and q = 1. This is exactly

the case in which α = 0. In the case α ̸= 0 we want to prove that if p1, q1 are the

nonnegative integers corresponding to −1/α, then G(p1, q1) < G(p, q). Given α =

±p+λp′

q
, we have −1/α = ± q

p+λp′
= − γ

β
. Taking the absolute value of the norm of
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both sides gives q2

|p2+pp′−p′2| =
q

|N(β)| , from which we get q1 = |N(β)| = |p2+pp′−p′2|
q

.

Writing −1/α = ± q
p+λp′

= ± q(p+p′−p′λ)
|p2+pp′−p′2| as ±

p1+λp′1
q1

we see that p1 = |p+ p′|.

We now consider two cases:

I: 0 ≤ p+ λp′ ≤ λq/2 and II: − λq/2 < p+ λp′ < 0

In case I we have

−p/λ ≤ p′ ≤ q/2− p/λ and

p/λ2 ≤ p+ p′ ≤ p/λ2 + q/2,

from which follow

p1 ≤ p/λ2 + q/2;

q1 ≤ (2λ− 1)p/2− q/4 if q/2 ≤ p/λ,

q1 ≤ p/2 + q/4 if p/λ < q/2.

If q/2 ≤ p/λ then 0 ≤ p2/λ2 − pq/λ + q2/4 ≤ p′2 ≤ p2/λ2. We also have

p2/λ2 ≤ p2 + pp′ ≤ p2/λ2 + pq/2, and so combining the two we get 0 ≤ p2 +

pp′− p′2 ≤ (1+2/λ)pq/2− q2/4, which implies q1 ≤ (1+2/λ)p/2− q/4 and since

1 + 2/λ = 2λ− 1 we have the result.

If p/λ < q/2 then −q/2 ≤ p′ ≤ q/2−p/λ implies |p′| ≤ q/2, and so p2/λ2−q2/4 ≤

p2 + pp′ − p′2 ≤ pq/2 + q2/4 implies q1 ≤ p/2 + q/4.

In case II we have

−p/λ− q/2 < p′ < −p/λ and

p/λ2 − q/2 < p+ p′ < p/λ2,
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from which follow

q1 ≤ (2λ− 1)p/2 + q/4;

p1 ≤ p/λ2 if p+ p′ ≥ 0,

p1 ≤ −p/λ2 + q/2 if p+ p′ < 0.

For the q1 case we have p
2/λ2−pq/2 < p2+pp′ < p2/λ2 and−p2/λ2−pq/λ−q2/4 <

−p′2 < −p2/λ2 which combine to give q1 ≤ (1+2/λ)p/2+q/4 = (2λ−1)p/2+q/4.

In all cases we have inequalities of the form p1 ≤ ap + bq and q1 ≤ cp + dq, for

a, b, c, d ∈ R. It follows G(p1, q1) ≤ G(ap + bq, cp + dq). Letting G(ap + bq, cp +

dq) = up2 + vpq +wq2, in all four cases a straightforward calculation shows that

u < 5, v < 4 and w < 2. Since p, q ≥ 0 it follows G(p1, q1) < G(p, q).

This immediately implies every element of Q(λ) is a cusp of some matrix of G5

since if ( b a
d c ) ∈ G5 then ( b a

d c ) (
0 −1
1 0 ) =

(
a −b
c −d

)
∈ G5. We are actually interested

in the ratio d/c rather than a/c, but given A = ( a b
c d ) it follows A−1 =

(
d −b
−c a

)
and so there is a 1-1 correspondence between the cusps and the ratios d/c; it

follows that for every element of α ∈ Q(λ) there exists some ( a b
c d ) ∈ G5 such that

d/c = α, and if there are two such matrices then their bottom rows are the same

(modulo ±1).

Given α ∈ Q(λ), we are interested in its unique representation d/c, where A =

( a b
c d ) ∈ G5. Considering A−1S = ( −b −d

a c ) it suffices to consider the unique

representative of α in the orbit of 0. Let M−1 be the matrix in the proof of

Leutbecher’s theorem such that M−1(0) = α. Setting M−1 = A−1S gives us the

numbers c and d we are seeking. Following the algorithm it is easy to see that if

d/c is the unique representation of α, then −d/c is the unique representation of

−α.
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We now turn to the problem of determining the coefficients (4.7) of the Eisenstein

series of weight 4 for G5. First note that given a double coset

{( ∗ ∗
c d+ncλ ) ∈ Γ : n ∈ Z} ∈ Γ∞ \ Γ/Γ∞, the ratio of the bottom two entries of any

element of a coset is d/c + nλ for some n ∈ Z. It therefore suffices to take as

representative for the coset the unique ratio in the range (−λ/2, λ/2]. Separating

out the special cases 0 and λ/2 and rearranging the series for (4.7) gives

an =

(
2π

λi

)k
nk−1

Γ(k)

1 + (−1)n(2λ2)−k +
∑

0<α<λ/2

h(α)−k2 cos(2πnα/λ)

 (4.10)

where h is the “height” function such that h(α) = c where d/c is the unique

representative of α. The problem thus becomes how to calculate h(α) given α.

Unfortunately it is not clear how to solve this problem. Nor does it seems possible

to parameterize the elements of G5 so that (4.7) can be used directly. Some efforts

in this direction are described in the undergraduate research report [She07], and

my own attempts at such parameterizations were also unsuccessful. Although

not clear, it’s possible there is no clean solution, and a reason might be that

we did not factor the transcendental part of the coefficients out as we were able

to do in the previous chapter. Indeed it is hard to see how one can naturally

define the Eisenstein series and calculate it so that the transcendental part is

factored out, without using the method of Section 4.1. Furthermore the fact that

the coefficients are transcendental may well be intimately tied with the difficulty

or impossibility of parameterizing the members of G5. This indicates that the

methods of the previous chapter can be used to give information about the fourier

coefficients of modular forms and cusp forms in the case that other techniques

may fail.
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CHAPTER 5

Conclusion and Future Work

In this thesis we have observed experimentally the properties of primes dividing

the denominators of fourier coefficients of triangle functions, formulated a con-

jecture describing these properties as precisely as possible, and proven part of

the conjecture. The first area for future work is to prove the rest of the conjec-

ture. However there is much more that can be done beyond this. The remainder

of this chapter is devoted to describing other possible future directions and the

connection of this work to other recent research on triangle functions.

If p is a prime for which the coefficients of Jm are p-adic integers, then the

coefficients may satisfy further congruence properties, analogous to those satisfied

by j ([Leh49a, Leh49b]). Akiyama has done some work in this area ([Aki92,

Aki93]) but there is doubtless more to be discovered.

We have only examined triangle functions corresponding to Hecke groups; that

is, we have limited ourselves to hyperbolic triangles in which two of the angles are

fixed at 0 and π/2. An obvious generalization is to look at mappings from more

general hyperbolic triangles to the upper half plane. The corresponding triangle

groups have been classified by Takeuchi ([Tak77]).

There appears to be an interesting analogy between hauptmoduls for noncongru-

ence subgroups of SL2(Z), first studied by Atkin and Swinnerton-Dyer ([AS71])

and hauptmoduls (in other words the Jm) for the non-arithmetic Hecke Groups.
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In particular the coefficients of both appear to have non-bounded denominators,

and there seems to be no genuine Hecke operators in either case. It would be

worthwhile to explore this relationship further, and in particular to determine if

any of the techniques used to explore non-congruence subgroups can be employed

to study triangle functions, and vice-versa.

Finally there is some very interesting recent work on triangle groups being done

by Wolfart and his collaborators. In particular Cohen and Wolfart ([CW90])

prove that there exist modular embeddings of triangle groups into arithmetic

groups acting on products Hr of the upper half plane. The quotient spaces in

this case are Hilbert modular spaces and the corresponding functions Hilbert

modular forms. Schmidt ([Sch97]) gives an explicit embedding for the group G5.

Furthermore Schaller and Wolfart ([SW00]) define the notion of semi-arithmetic

Fuchsian group, which encompasses all triangle groups. The idea is that these

groups, although non-arithmetic in general, still have interesting arithmetic prop-

erties. The work of this thesis supports this idea. It appears from this work that

Hilbert modular forms may well be the most natural and promising tool to both

prove further properties of fourier coefficients of triangle functions, and to also

explain them.
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