Math 32BH Homework 4 Solutions

I graded 4 of the problems: Page 306: 16; Page 313: 24; Page 323: 24, 27.

The following are solutions to the homework problems and additional comments for the problems I graded. Note that solutions are often brief; if you need more detail please ask in section or office hours. I may well have made errors in my solutions so please let me know if I did. For grading information see my class webpage.

General Comments

The maximum number of points was 12. The high score was 12, the median was 11, and the mean was 9.

Page 306

- 2. $M = \int_0^{\pi} \int_0^a dr \, dr \, d\theta = \frac{da^2\pi}{2}$. $\bar{x} = 0$ by symmetry. $\bar{y} = \frac{d}{M} \int_0^a r^2 \int_0^{\pi} \sin \theta \, d\theta \, dr = \frac{4a}{3\pi}$.
- 12. By Pappus's Theorem we have $V = 2\pi a \frac{\pi a^2}{2} = \pi^2 a^3$.
- 16. $M = k \int_{0}^{3} \rho^{3} \int_{0}^{\frac{\pi}{2}} \sin \phi \int_{0}^{2\pi} d\theta \, d\phi \, d\rho = \frac{81k\pi}{2}. \ \bar{x} = \bar{y} = 0$ by symmetry. $\bar{z} = \frac{k}{M} \int_{0}^{3} \rho^{4} \int_{0}^{\frac{\pi}{2}} \sin \phi \cos \phi \int_{0}^{2\pi} d\theta \, d\phi \, d\rho = \frac{243k\pi}{5} \cdot \frac{2}{81k\pi} = \frac{6}{5}.$

Page 313

5. Both equal $(1+y)^5 - y^5$.

10.
$$F'(x) = \frac{\cos \pi x - \cos \frac{\pi x}{2}}{\pi}$$

- 21. Although one can use integration by parts to evaluate this integral, to use Leibniz's Rule evaluate both sides of $\frac{d}{da} \int_{\epsilon}^{1} x^{a} dx = \int_{\epsilon}^{1} \frac{\partial}{\partial a} x^{a} dx$. Note that y should be a in the problem.
- 24. Taking the derivative by *a* of both sides of $\int_0^a \frac{dx}{(x^2+a^2)^2} = \frac{1}{4a^3} + \frac{\pi}{8a^3}$, we get $\int_0^a \frac{-4a \, dx}{(x^2+a^2)^3} + \frac{1}{4a^4} = \frac{-3}{4a^4} + \frac{-3\pi}{8a^4}$, and so $\int_0^a \frac{dx}{(x^2+a^2)^3} = \frac{1}{4a^5} + \frac{3\pi}{32a^5}$.

Page 323

- 2. Converges to $\frac{\pi}{2}$.
- 8. Converges to π .
- 13. Converges to 2π .
- 18. Diverges to $+\infty$.

24. First note that $n(x) \ge 0$ for all x. Now $\left(\int_0^\infty n(x) \, dx\right)^2 = \frac{1}{2\pi} \int_0^\infty \int_0^\infty e^{\frac{-(x^2+y^2)}{2}} \, dx \, dy = \frac{1}{2\pi} \int_0^{\pi/2} \int_0^\infty r e^{\frac{-r^2}{2}} \, dr \, d\theta = \frac{1}{4}$, and so $\int_0^\infty n(x) \, dx = \frac{1}{2}$. As you can see there is a typo in the book and the original interval of integration should have been $(-\infty,\infty)$. In this case we get $\left(\int_{-\infty}^{\infty} n(x) \, dx\right)^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{-(x^2+y^2)}{2}} \, dx \, dy = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\infty} r e^{\frac{-r^2}{2}} \, dr \, d\theta = 1, \text{ and so } \int_{-\infty}^{\infty} n(x) \, dx = 1.$ I gave full credit for either solution as long as you were clear and consistent.

- 27. (a) Note that we must have a > 0. The base case for n = 0 is easy. Assume true for n 1 and prove for n. We have $\int_0^\infty x^n e^{-ax} dx = \left(\frac{-1}{a}x^n e^{-ax}\right)\Big|_0^\infty + \frac{n}{a}\int_0^\infty x^{n-1}e^{-ax} dx = \frac{n}{a}\frac{(n-1)!}{a^n} = \frac{n!}{a^{n+1}}$.
 - (b) $\frac{c^3}{32\pi} \int_0^{2\pi} \int_0^{\pi} \sin \phi \int_0^{\infty} \rho^2 (1-c\rho)^2 e^{-c\rho} d\rho d\phi d\theta = \frac{c^3}{8} \int_0^{\infty} \rho^2 (1-c\rho)^2 e^{-c\rho} d\rho = \frac{7}{4}$. Note that there is a typo in the problem (what else is new?). Jared Warner looked up the correct formula and found the $(1-c\rho)$ should actually be $(2-c\rho)$. In this case you should get 1.