
John Leo Math 31B, Winter 2007 March 20, 2007

Final Exam Solutions

1. (5 points) Find

lim
x→0

1− cos x

x2
.

Solution. Use l’Hôpital’s Rule. We have

lim
x→0

1− cos x

x2

H= lim
x→0

sinx

2x

H= lim
x→0

cos x

2
=

1
2
.

This is problem 27 of section 7.7.

2. (5 points) Determine the radius of convergence and interval of convergence for

∞∑
n=1

(−2)nxn

4
√

n
.

Solution. This is exercise 11 of section 12.8. By the ratio test,∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣2n+1xn+1

4
√

n + 1
·

4
√

n

2nxn

∣∣∣∣ → 2 |x|

as n → ∞, and so the radius of convergence is 1
2 . When x = − 1

2 , the series diverges by comparison
to p-series (p = 1

4 ); when x = 1
2 , the series converges by the Alternating Series Test. Therefore the

interval of convergence is (− 1
2 , 1

2 ].

3. (10 points)

(a) (5 points) Evaluate ∫
sin3 x dx.

Solution. We have∫
sin3 x dx =

∫
(1− cos2 x) sinx dx =

∫
−(1− u2) du =

u3

3
− u + C =

1
3

cos3 x− cos x + C

using the substitution u = cos x.

(b) (5 points) Evaluate ∫ √
3

−1

√
4− t2 dt.

Solution. Let t = 2 sinx, where −π/2 ≤ x ≤ π/2 (note that cos x ≥ 0 for all such x). Then
dt = 2 cos x, and the limits are sin−1(−1/2) = −π/6 and sin−1(

√
3/2) = π/3. We have∫ √

3

−1

√
4− t2 dt =

∫ π/3

−π/6

4 cos2 x dx =
∫ π/3

−π/6

(2 + 2 cos 2x) dx = π + [sin(2π/3)− sin(−π/3)] = π +
√

3.



4. (10 points) Evaluate ∫
2x2 + x + 4

x3 + 4x
dx.

Solution. Use integration by partial fractions. The degree of the numerator is less than the denomon-
inator, and the denominator factors as x(x2 + 4) where x2 + 4 is irreducible. We have

2x2 + x + 4
x(x2 + 4)

=
A

x
+

Bx + C

x2 + 4
.

Multiply both sides by x(x2 + 4), resulting in

2x2 + x + 4 = A(x2 + 4) + (Bx + C)x = (A + B)x2 + Cx + 4A

This immediately gives us A = 1, B = 1 and C = 1. We thus get∫
2x2 + x + 4

x3 + 4x
dx =

∫
1
x

dx +
∫

x

x2 + 4
dx +

∫
1

x2 + 4
dx

= ln |x|+ 1
2

ln(x2 + 4) +
1
2

tan−1(x/2) + K.

This is almost identical to example 5 of section 8.4.

5. (10 points)

(a) (5 points) Give the definition of a geometric series whose first term is 1. When exactly does this
series converge and what value does it converge to? You do not need to prove your answer.

Solution. Given r ∈ R, a geometric series whose first term is 1 is

1 + r + r2 + r3 + · · · =
∞∑

n=1

rn−1 =
∞∑

n=0

rn.

Any of these three characterizations is fine. The series converges if and only if |r| < 1 and if it
converges the value is

1
1− r

.

(b) (5 points) Give the formula for the the nth partial sum sn of a geometric series whose first term is
1. Prove your formula is correct using either the textbook’s method or mathematical induction. Be
sure your proof is clear and careful.

Solution. Textbook Method. For r = 1, we have sn = n by definition. If r 6= 1, then

sn = 1 + r + · · ·+ rn−1

1 + rsn = 1 + r + · · ·+ rn−1 + rn

= sn + rn

which, solving for sn, implies

sn =
1− rn

1− r
.

Mathemetical Induction. For r = 1, we have sn = n by definition. For r 6= 1, we want to prove

sn =
1− rn

1− r
.

for all n ≥ 1.
Base case. If n = 1 then sn = 1 by definition, and sn = 1−r

1−r = 1 by the formula.
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Induction. Assume true for n and prove for n + 1. By the definition, sn+1 = sn + rn. By the
induction hypothesis, sn = 1−rn

1−r . Therefore

sn+1 =
1− rn

1− r
+ rn

=
1− rn

1− r
+

rn − rn+1

1− r

=
1− rn+1

1− r

which is what we wanted to prove.

6. (10 points)

(a) (5 points) For the following subparts, you need only write the answer. You do not need to justify
anything. Your answer must be perfectly correct, however, to get the point.

(i) (1 point) State the general form of the Maclaurin series for the function f(x).
Solution. f(x) =

∑∞
n=0

f(n)(0)
n! xn.

(ii) (1 point) State the general form of the Taylor series about point a for the function f(x).
Solution. f(x) =

∑∞
n=0

f(n)(a)
n! (x− a)n.

(iii) (1 point) Write down the Maclaurin series for ex.
Solution. ex =

∑∞
n=0

xn

n! .

(iv) (1 point) Write down the Maclaurin series for cos x.

Solution. cos x =
∑∞

n=0(−1)n x2n

(2n)! .

(v) (1 point) Write down the Maclaurin series for sinx.

Solution. sinx =
∑∞

n=0(−1)n x2n+1

(2n+1)! .

(b) (5 points) Assuming f(x) =
∑∞

n=0 cnxn = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · , carefully derive,

step-by-step, formulas for c0, c1, c2 and c3 in terms of f and its derivatives.

Solution. Given f(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · , plugging in x = 0 we get c0 = f(0).

Taking a derivative we have f ′(x) = c1 + 2c2x + 3c3x
2 + 4c4x

3 + · · · , and c1 = f ′(0).
Taking another derivative we have f ′′(x) = 2c2x + 6c3x + 12c4x

2 + · · · , and c2 = f ′′(0)/2.
Taking one more derivative we have f (3)(x) = 6c3 + 24c4x + · · · , and c3 = f (3)(0)/6.

7. (10 points)

(a) (5 points) Determine for what real p the series

∞∑
n=1

1
np

.

converges. Carefully justify your answer.

Solution. This is the p-series, convergent for p > 1 and divergent for p ≤ 1. We prove these
facts as was done in the textbook (section 12.3). First if p < 0, then limn→∞(1/np) = ∞, and if
p = 0, then limn→∞(1/np) = 1. In either case the series diverges by the Test for Divergence. If
p > 0, then the function f(x) = 1/xp is continuous, positive, and decreasing on [1,∞). Therefore
we can use the integral test. For p = 1,

∫∞
1

1/x = ln x]∞1 = ∞, and so the integral and series

both diverge. For p > 0 and p 6= 1,
∫∞
1

1/xp = limt→∞
x1−p

1−p

]t

1
= limt→∞

(
t1−p

1−p −
1

1−p

)
, which

converges to 1
p−1 for p > 1 and diverges to ∞ if p < 1. The result follows.

(b) (5 points) Determine for what real p the series

∞∑
n=2

1
n(lnn)p

.

converges. Carefully justify your answer.
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Solution. This is exercise 25 of section 12.3 and problem 5(d) of the second midterm. For p < 1
the series diverges by comparison to the harmonic series. So say that p ≥ 1 and use the integral
test. The function f(x) = 1

x(ln x)p is clearly positive on [2,∞) and also decreasing since x(lnx)p

is increasing for p ≥ 1. For p = 1, we have∫ ∞

2

1
x lnx

dx =
∫ ∞

ln 2

1
u

du = ln u]∞ln 2 = ∞

using the substitution u = lnx, and so the integral and series both diverge for p = 1.
For p > 1 we have∫ ∞

2

1
x(lnx)p

dx =
∫ ∞

ln 2

u−p du =
u1−p

1− p

]∞
ln 2

=
1

(ln 2)p−1(p− 1)

using the same substitution, and so the integral and series both converge for p > 1.

8. (10 points) Find the Maclaurin series for f(x) = − ln(1 − x) using the definition of Maclaurin series.
Show all of your work. What is the radius of convergence and the interval of convergence for the series?

Solution. It is easy to show (by making a table and seeing the pattern, or by mathematical induction)
that f (n)(x) = (n− 1)!(1− x)−n for all n ≥ 1. Therefore f(0) = 0 and f (n)(0) = (n− 1)! for all n ≥ 1.
It follows

f(x) =
∞∑

n=1

xn

n
= x +

x2

2
+

x3

3
+ · · · .

By the ratio test, ∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ xn+1

n + 1
· n

xn

∣∣∣∣ → |x|

as n → ∞, and so the radius of convergence is 1. When x = 1 we have the harmonic series (plus 1)
which doesn’t converge, and when x = −1 we have the alternating harmonic series (plus 1) which does
converge, and so the interval of convergence is [−1, 1).

9. (10 points)

(a) (5 points) Let c0 = C, where C is some constant, and for n > 0 define

c2n =
c2n−2

2n
.

Prove that

c2n =
C

2nn!
for all n ≥ 0 using mathematical induction.

Solution. Base case, n = 0. By definition we have c0 = C = C
200! .

Induction. Assume true for n, prove for n+1. We have c2n+2 = c2n

2n+2 = C
2nn! ·

1
2(n+1) = C

2n+1(n+1)!

using the induction hypothesis.

(b) (5 points) Solve the differential equation y′ = xy by assuming y =
∑∞

n=0 cnxn = c0+c1x+c2x
2+· · ·

is a power series and solving for the coefficients cn. Derive a general formula for cn. Can you tell what
function this power series represents?

Solution. Letting y =
∑∞

n=0 cnxn we have y′ =
∑∞

n=0 ncnxn−1. Then y′ = xy implies∑∞
n=0 ncnxn−1 =

∑∞
n=0 cnxn+1. Subtracting the right hand side from both sides gives c1 +∑∞

n=1((n + 1)cn+1 − cn−1)xn = 0. It follows cn = 0 for all n odd, and letting c0 = C, some
constant, we have (2n)c2n = c2n−2, and so we have the same recurrence relation as in part (a).
Using that result it follows

y = C
∞∑

n=0

x2n

2nn!
.

You should recognize this as the power series for Ce
x2
2 , which if you try it out solves the differential

equation.
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10. (20 points) Although n! = 1 · 2 · · ·n is initially defined only for positive integers, Euler discovered a way
to “extend” the factorial function to all positive real numbers. In this problem we will explore this function,
called the Gamma (Γ) function.

For x > 0 a real number, define

Γ(x) =
∫ ∞

0

e−ttx−1 dt.

This is an improper integral, but it is possible to prove it converges for all positive x. Assume that it
converges for this problem.

(a) (10 points) Using integration by parts, prove

Γ(x + 1) = xΓ(x)

for all real x > 0. Make sure to carefully handle any limits that arise.

Solution. We have
Γ(x + 1) =

∫ ∞

0

e−ttx dt.

Let u = tx and dv = e−t dt, so du = xtx−1 dt and v = −e−t. Then integration by parts gives

Γ(x + 1) = −txe−t
]∞
0

+
∫ ∞

0

xe−ttx−1 dt = x

∫ ∞

0

e−ttx−1 dt = xΓ(x)

since limt→∞ txe−t = 0. Why is this limit zero? Use l’Hôpital’s Rule:

lim
t→∞

tx

et

H= lim
t→∞

xtx−1

et

and repeating enough times we eventually get either 0 or t to a negative power in the numerator,
and in either case the limit is 0.

(b) (10 points) Evaluate Γ(1). Then, using mathematical induction, prove that

Γ(n + 1) = n!

for all integers n ≥ 0.

Solution. From the definition, we have

Γ(1) =
∫ ∞

0

e−tt1−1 dt =
∫ ∞

0

e−t dt = −e−t
]∞
0

= 1.

Now prove Γ(n + 1) = n! by induction on n. The base case is n = 0, and we just showed
Γ(1) = 1 = 0!. For induction, assume true for n and prove for n + 1. In part (a) above we proved
Γ(x + 1) = xΓ(x). Letting x = n + 1, this means Γ(n + 2) = (n + 1)Γ(n + 1). By the induction
hypothesis, Γ(n + 1) = n!, and so Γ(n + 2) = (n + 1)n! = (n + 1)!, which is what we wanted to
show.
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