
Complex Numbers, Polynomials, and Symmetry

John Leo

March 9, 2011

1 Roots of Polynomials

The complex numbers arise naturally from attempts to find roots of polynomials. A polyno-
mial is an expression such as 3x4 + πx3 + x2 + 5x+

√
2 in a single variable (in this case x)

that consists of a sum of terms in which x appears with various whole-number powers. The
highest power of x is called the degree of the polynomial. So the previous polynomial has
degree 4.

A root of a polynomial is a value for x that makes the value of the entire polynomial zero.
For example consider the degree 2 polynomial x2 − 5x + 6. If x = 2 then the polynomial
evaluates to 22 − 5 · 2 + 6 = 0, so 2 is a root of the polynomial. Likewise if x = 3 then the
polynomial evaluates to 32 − 5 · 3 + 6 = 0, so 3 is also a root of the polynomial. This should
not be surprising since x2 − 5x+ 6 = (x− 2)(x− 3), so by the ZPP (zero product property)
the polynomial is zero iff (if and only if) x− 2 = 0 or x− 3 = 0; in other words iff x = 2 or
x = 3. You learned this back in Algebra 1.

Now consider the polynomial x2+1. This polynomial has no real roots because if x2+1 = 0
then x2 = −1, but any real number squared must either be zero or a positive number. We
could just give up and say there are no roots, but mathematicians don’t like to give up.
Instead we will define a new number, the “imaginary” number i, to be a square root of −1.
Since i =

√
−1, it follows i2 = −1 and so i is a root of x2 + 1. Note that −i is also a square

root of −1 and also satisfies (−i)2 + 1 = 0 so it is also a root of x2 + 1, which therefore has
two roots. You can check that x2 + 1 = (x+ i)(x− i).

1. What is i2011?

2. [adapted from Exeter Math 4C, August 2009, 12:2] What is wrong with the following
argument?

i83 = (
√
−1)83 = ((−1)1/2)83 = ((−1)83)1/2 = (−1)1/2 =

√
−1 = i

3. Is i positive or negative? Is it possible to tell?

2 Algebra of Complex Numbers

Now that we have a new number i, let’s see what we can do with it. First of all we can form
a complex number a + bi where a and b are real numbers. a is called the real part and b is
called the imaginary part of the complex number.
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1. How would you add complex numbers 2 + 3i and 4 + 5i? Formulate a general rule for
adding complex numbers a+bi and c+di. Verify that your rule satisfies the associative
and commutative laws of addition.

2. What is the additive inverse of 2 + 3i? That is, what number c+ di can you add to it
to get the additive identity (zero)? In general what is the additive inverse of a+ bi?

3. How would you multiply complex numbers 2+3i and 4+5i? Formulate a general rule
for multiplying complex numbers a + bi and c + di. Verify that your rule satisfies the
associative and commutative laws of multiplication.

4. Does the distributive law hold? That is, does (a+ bi)[(c+ di)+ (x+ yi)] = (a+ bi)(c+
di) + (a+ bi)(x+ yi)?

5. Can we divide 1 + 2i by 3 + 4i and get a complex number? That is, does there exist
some real c and d such that 1+2i

3+4i
= c+ di? There is a nice trick to make this work.

6. Now find the multiplicative inverse of 2 + 3i; that is, the number c + di such that
(2 + 3i)(c+ di) = 1. Describe the multiplicative inverse of a+ bi.

7. Is every real number also a complex number? Why or why not?

In the above exercises we have shown that complex numbers can be added and mul-
tiplied, and that they have additive and multiplicative inverses. They satisfy associative,
commutative and distributive laws. A set of numbers that satisfies all of these properties is
called a field. Fields you already know are the rational numbers Q and the real numbers R.
We have now defined a new field C to be C = {a+ bi : a, b ∈ R}, where i satisfies i2 = −1.

We will now examine just a few of the amazing properties of the field of complex numbers.

3 Geometry of Complex Numbers

One of the beauties of complex numbers is that they are so easy to visualize. You may
remember in elementary school you visualized the real numbers using a number line.

.
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We can visualize the complex numbers using two perpendicular number lines, one for
the real part and one for the imaginary part. They intersect at zero, the origin. These
are just like the x and y axes of the Cartesian coordinate system. Here they are called the
real axis and the imaginary axis. So the complex number x + iy can be plotted as a point
(x, y) on a plane, which is called the complex plane. Note that while the real numbers are
“one-dimensional”, the complex numbers are “two-dimensional”.
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1. Plot the numbers 2 + 3i and 2 − 3i on the complex plane. These two numbers are
complex conjugates. The complex conjugate of z = a + bi is defined to be z̄ = a− bi.
Where did you see a complex conjugate in the previous section? What symmetry
relates a number and its complex conjugate?

2. We measure the “size” of a real number by using absolute value: |x| is the distance
from the real number x to the origin. In the same way we define the absolute value of
a complex number to be its distance from the origin. This distance will always be a
real number. What is |3 + 4i|? In general what is |a+ bi|? What is |a− bi|? What do
complex conjugates have to do with absolute value?

3. We can also view the complex numbers as a two-dimensional real vector space. Just
think of x+ iy as the vector [x, y]. Look back in the handout Basics of Linear Algebra
at the definition of a basis of a vector space. What would be the standard basis of C
as a real vector space? What is the length of vector [x, y]?

4. Plot the set of points {cos θ + i sin θ : 0 ≤ θ < 2π}. What familiar object is this?

5. If complex number z is written as z = x+ iy then we say that x+ iy is the rectangular
form of z. We can also write z in polar form! Let r be the distance from z to the
origin, and let θ be the angle (in radians, of course!) that the line through the origin
and z makes with the positive real axis. Then we can write z in either rectangular
coordinates (x, y) or polar coordinates (r, θ). Give formulas for r and θ in terms of x
and y, and vice-versa.

6. Just like we can write z = x+ iy, we would like to be able to write
“z = (something in polar form)” so that we can manipulate it algebraically. Do this
using r and cos θ + i sin θ and show what this means geometrically.
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7. Write the following numbers in polar form: (a) 1, (b) i, (c)
√
2
2
+

√
2
2
i, (d) −1

2
−

√
3
2
i.

4 Euler’s Formula

In the usual high school coverage of complex numbers, one abbreviates cos θ+i sin θ as cis(θ).
You never see this abbreviation after that, however, so let’s use the correct notation from
the start. Euler’s formula states that

eiθ = cos θ + i sin θ.

The reason this notation is not normally shown in high school should be clear. We are
using a number e that we haven’t defined and whose definition is difficult, and we’re using
complex exponentiation which we also haven’t defined. But I think it’s still worth learning
this notation now. We will simply define eiθ to be cos θ + i sin θ and show that the laws of
exponents work the way we expect. If you take Calculus Theory, everything will be developed
carefully and Euler’s formula will be proven at the end of the second year.

1. Say that you start with a dollar and earn 100% (1 as a fraction) interest over one year.
Of course you end with 2 dollars. Next say that you start with a dollar and earn 50%
(1/2 as a fraction) interest each half year. Write the formula for how much you end
up with after a year in this case and show that the answer is $2.25. Now say that you
start with a dollar and earn 100

n
% (1/n as a fraction) interest each 1/n year. Write a

formula for how much you end up with after a year in this case. Notice that as n gets
bigger the amount you end up with seems to converge to a value between 2 and 3. By
using your calculator and plugging in large values of n, determine this value accurately
to three digits after the decimal place. The exact number you get as n goes to infinity
is e.

2. Using Euler’s formula, write the complex conjugates of the four numbers in exercise 7
of the previous section in polar form reiθ.

3. Plot the set of points
{
eiθ : 0 ≤ θ < 2π

}
. What is

∣∣reiθ∣∣?
4. Every complex number except zero can be written in polar form reiθ with r > 0, and

we will restrict r to always be non-negative. Even in this case, there are still infinitely
many polar forms for a single complex number. Describe all polar forms of the number√
3− i. How might you restrict the angle to get a unique “canonical” value?

5. Describe all polar forms of the real number −1.

6. If z = reiθ, what is the complex conjugate z̄ in polar form?

7. Polar form is especially useful when multiplying numbers. Multiply (a+ bi)(c+ di) in
rectangular form. Now multiply (reiα)(seiβ) in polar form, assuming laws of exponents
work as you would expect. Which is easier?

8. Let’s make sure the laws of exponents really do work. Using Euler’s formula, prove
that eiαeiβ = ei(α+β). You will need to recall your addition laws for sine and cosine
that we derived earlier using matrices and other techniques. Rederive them if you’ve
forgotten them.
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9. Not only is multiplication easier using polar form, but it’s also easy to understand
what effect multiplication has geometrically. Plot the points

√
3 − i and i(

√
3 − i).

What effect did multiplying by i have geometrically? Convert both
√
3 − i and i to

polar form, multiply them, and see if you can explain what is going on.

10. Given a complex number z, what is the geometric effect of multiplying z by −1? What
is the geometric effect of multiplying z by

√
2
2
+

√
2
2
i? What is the geometric effect of

multiplying z by 3i?

11. Given a complex number z, what is the geometric effect of multiplying z by reiθ?

12. If multiplication is easier in polar form, then exponentiation should be easier still! Let
z = 1 + i

√
3 and calculate z4 in two ways. First use rectangular form, multiplying

everything out by hand. Next convert to polar form, exponentiate in polar form, and
then convert back to rectangular form. Which was easier?

13. We can now do even more amazing things. Calculate ii. You may be very surprised at
the answer! Use your calculator to find a rough numerical approximation of its value.

14. Find a special angle θ that when you plug it into Euler’s formula, results in an equation
relating the five most important constants in mathematics: e, π, i, 0, and 1. This has
been called the most beautiful equation in all of mathematics.

5 Roots of Unity

Solutions to the equation xn − 1 = 0 are called roots of unity since they are solutions to
xn = 1, or in other words the nth roots of one (“unity”). When we allow complex numbers,
there are always exactly n distinct roots of unity, and they have a particularly simple and
beautiful symmetry.

1. The single first root of unity is 1, and the two second roots of unity are 1 and −1.
What are the four 4th roots of unity? Plot them on the complex plane.

2. Show algebraically that x4 − 1 = (x− α)(x− β)(x− γ)(x− δ) where α, β, γ, δ are the
fourth roots of unity you found in the previous exercise. Express the right hand side
of the equation as a product of three polynomials with all real coefficients.

3. What are the three 3rd roots of unity? Describe them both in rectangular form and
polar form, and plot them on the complex plane.

4. Show algebraically that x3−1 = (x−α)(x−β)(x−γ) where α, β, γ are the third roots
of unity you found in the previous exercise.

5. What are the six 6th roots of unity? Describe them both in rectangular form and polar
form, and plot them on the complex plane.

6. What is
√
i and how many numbers z are there such that z2 = i? Express them in

polar form. Are they nth roots of unity? If so, what is n?

7. In general what are the nth roots of unity in polar form? What symmetry do they
have?
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6 Roots of Numbers

Now that we understand roots of unity, let’s apply our knowledge to understand better the
roots of arbitrary numbers.

1. What is
√
64? Which real numbers x satisfy x2 = 64? Which complex numbers z

satisfy z2 = 64?

2. What is 3
√
64? Which real numbers x satisfy x3 = 64? Which complex numbers z

satisfy z3 = 64?

3. Let x be a positive real number. If we only allow real solutions, what is the difference
between taking the nth root of x when n is even and when n is odd?

4. Look back at Exeter problem 46:2. Now that you have learned complex numbers, verify
that (−8)1/3 has three values (one real), that (−8)1/4 has four values (all non-real) and
that (−8)2/6 is no longer ambiguous. List the 3rd and 4th roots of −8 in polar form.

5. In general, if we are given z = reiθ in polar form, what are the nth roots of z in polar
form? What do they look like if you plot them on the complex plane?

6. Let z be a complex number which is not real. Is it possible for z1/n to be real for some
n ∈ N? If so give an example. If not, explain why not.

7 Roots of Polynomials Revisited

1. Show that x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3). What does this say about the
roots of the polynomial?

2. Let f(x) and g(x) be polynomials. For example we could have f(x) = x3−6x2+11x−6
and g(x) = x2 − 5x + 6. If we can write f(x) = (x − a)g(x) then clearly a is a
root of f(x) since f(a) = (a − a)g(a) = 0. In our example, x3 − 6x2 + 11x − 6 =
(x−1)(x2− 5x+6). Verify that this is true. Then find two polynomials h(x) and k(x)
such that x3 − 6x2 + 11x− 6 = (x− 2)h(x) and x3 − 6x2 + 11x− 6 = (x− 3)k(x).

3. It turns out that the converse is also true: If a is a root of polynomial f(x), then there
exists some polynomial g(x) such that f(x) = (x − a)g(x). That is, we can always
“factor out” the linear term (x− a) from f(x) if a is a root. The proof (which is done
early in Calculus Theory) is not too difficult and uses the division algorithm, which is
just like long division of integers that you perhaps did in elementary school.

For now, let’s assume this is true and see how to use it. Verify that x = 1 is a root of
x3+x2−17x+15 and see if you can figure out how to divide x3+x2−17x+15 by x−1
using long division to get a degree 2 polynomial. Then factor the degree 2 polynomial
to find the other two roots. We’ll go over how to divide polynomials in class.

4. Notice that x2−2x+1 = (x−1)(x−1). Therefore 1 is the only root of the polynomial,
but in essence it is the root twice. We say that the the root 1 has multiplicity 2. In
general if a is the root of polynomial f(x), then a has multiplicity n if (x− a)n divides
f(x) (with no remainder) but (x−a)n+1 does not divide f(x). What is the multiplicity
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of the root 1 in the polynomial x4 − 6x3 + 12x2 − 10x + 3? What are the other roots
of this polynomial and their multiplicities?

5. Factor x4 − 5x2 + 6 by hand and find its four roots.

6. Factor x4+4x2+4 by hand and find its four roots. Note that the roots have multiplicity
2 this time! Also note that they are imaginary!

7. There are ways to find roots quickly without resorting to the quadratic and cubic
formulas. If f(x) is a degree 2 polynomial and f(x) = (x − a)(x − b), then we know
f(x) = x2− (a+ b)x+ ab. That is, the coefficient of x must be the negative of the sum
of the two roots, and the constant coefficient must be the product of the two roots.
Use this method to quickly factor x2 + 2x− 35. (This should be review.)

8. You can do the same trick for degree 3 and higher polynomials, although it gets harder.
If f(x) has degree three and f(x) = (x− a)(x− b)(x− c), then f(x) = x3 − (a + b +
c)x2 + (ab + ac + bc)x − abc. Explain the patterns and symmetries you see in this
expression. Then see if you can use it to find the roots of x3 − 2x2 − 5x+ 6.

8 The Fundamental Theorem of Algebra

We needed complex numbers to solve x2+1 = 0. What happens now if we allow polynomials
to have complex coefficients? That is, if we want to find the roots of an equation like
(1+2i)x2+(3+4i)x+(5+6i) = 0, do we need some kind of new “super complex” numbers?
Happily the answer is no: Complex numbers are enough!

The fundamental theorem of algebra, one of the greatest results in mathematics, states
that any polynomial of degree n with complex coefficients has exactly n complex roots,
counting multiplicity. There are many proofs of this theorem (in fact there is a college un-
dergraduate textbook titled The Fundamental Theorem of Algebra which gives ten different
proofs) but none of them are easy. If you take Calculus Theory you will learn how to prove
some important special cases of this remarkable theorem.

Here we prove the very special case of n = 2 by simply re-deriving the quadratic formula!

1. Review the derivation of the quadratic formula from the fall final exam. Show that if
ax2 + bx+ c = 0 where a, b, c can now be complex numbers (a ̸= 0), then it still holds

that x = −b±
√
b2−4ac
2a

.

2. Use the quadratic formula to find the two roots of (1+2i)x2+(3+4i)x+(5− 4i) = 0.
Write them in rectangular form.
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